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Deep learning enables cross-state image restoration 
through a flexible multimode fibre
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Multimode fibres (MMF) have 
recently attracted significant 
renewed interest in applications 
such as optical communication, 
imaging and optical trapping [1]. 
This is mainly due to the extremely 
high information-transmission 
capacity offered by the thousands 
of fibre modes transmitting in the 
MMF.  However, MMF transmission 
is highly sensitive to external 
perturbations and environmental 
changes, resulting in MMF 
transmission channels being highly 
variable and random. This largely 
limits the practical application of 
MMFs and hinders the full 
exploitation of their information 
capacity.

Objective
Here, we present a deep-learning-
based framework [2] to achieve  
cross-state image restoration
through a flexible MMF in order to 
turn MMFs into practical imaging 
components or communication 
devices. We utilise the outstanding 
representation power of a deep 
neural network (DNN) to transmit 
images through a single MMF in 
three scenarios: image 
transmission simulation using 
measured transmission matrix 
(TM), image retrieval through  a 
stationary MMF with different 
 transmission states, and image 
retrieval through a flexible MMF 
subject to continuous shape 
variations (CSV).

Methods

C. Cross-state image retrieval 
through a stationary MMF
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Fig. 3. MMF configurations: G1, G2 
and G3 are three geometric states 
for the MMF under testing.
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B. Simulation with measured TM
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Fig. 2.  Schematic of speckle generation 
using TM.

Fig. 1.  Schematics of the deep neural 
network trained for imaging through an 
MMF.
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In conclusion, we demonstrate 
experimentally that distorted images  
through a flexible MMF subject to CSV 
can be recovered successfully by an 
appropriately trained deep neural 
network without knowing the exact 
MMF geometrical states.

Fig. 5  The network performance at 
different sizes of randomly chosen training 
datasets.
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Fig. 4. Experimental configuration to apply 
CSV to the MMF under testing.

D. Deep learning a flexible MMF 
subject to CSV

A. DNN Implementation
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