Evolutionary Bioinformatics

m6A-CAPred: domain-characteristics enabled machine learning of cancer-associated N6-methyladenosine (m6A) sites

Journal:	Evolutionary Bioinformatics				
Manuscript ID	EVB-24-0102				
Manuscript Type:	Original Research Article				
Date Submitted by the Author:	31-Oct-2024				
Complete List of Authors:	Chen, Ze; The Affiliated Hospital of Xuzhou Medical University, Urology Liu, Yu; Nanjing University of Chinese Medicine Cao, Sheng; The Affiliated Hospital of Xuzhou Medical University, Urology Huang, Jia; Xi'an Jiaotong-Liverpool University Wang, Xuan; Xi'an Jiaotong-Liverpool University Zhong, Wei; The Affiliated Hospital of Xuzhou Medical University, Urology Xiao, Yong; The Affiliated Hospital of Xuzhou Medical University, Urology				
Keywords:	N6-methyladenosine, Machine-learning, Epitranscriptomic, Cancer- associated, SVM				
Abstract:	N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic cells, playing a crucial role in regulating various biological processes. Dysregulation of m6A status is implicated in multiple human diseases, including cancer. Several prediction frameworks have been proposed for high-accuracy identification of putative m6A sites; however, none have tar-geted direct prediction of cancer-associated (or pro-cancer) m6A residues at the base-resolution level. Here, we report m6A-CAPred, a computational tool for predicting pro-cancer m6A sites learned from a comprehensive dataset of experimentally validated m6A sites. Our findings indi-cate that sequence information alone achieves limited performance. However, by leveraging domain-related knowledge (genome-derived features), m6A-CAPred successfully captures dis-tinct domain characteristics between potentially pro-cancer m6A modifications and normal ones, with an average AUROC of 0.885 tested on an independent dataset. Leveraging the power of machine learning, we then performed transcriptome-wide prediction for large-scale screening of potentially pro-cancer m6A sites. Somatic variants derived from 33 types of TCGA cancer projects were extracted for additional validation, and the results showed that SNP density clearly differ-entiated the predicted procancer and normal m6A sites. The m6A-CAPred.				
Note: The following files were submitted by the author for peer review, but cannot be converted to					

PDF. You must view these files (e.g. movies) online.

[Genes] Manuscript ID_ genes-3297438 - Declined for Publication.eml

SCHOLARONE[™] Manuscripts

https://mc.manuscriptcentral.com/evb

ac g c a t c a t genes

Article

Page 2 of 31

m6A-CAPred: domain-characteristics enabled machine learning of cancer-associated N6-methyladenosine (m⁶A) sites

Zeyu Chen^{1,‡}, Yuqi Liu^{2,‡}, Sheng Cao^{1,‡}, Jiaming Huang³, Xuan Wang³, Wei Zhong^{4,*} and Yongshuang Xiao^{1,*}

2

3

- 5
- ¹ Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221006, China
- ² Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- ³ Department of Biological Sciences, School of Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
- ⁴ Department of Urology, Suining County People's Hospital, Suining, 221200, China
- # Contributed equally to this work
 - * Correspondence: <u>ys.xiao@xzhmu.edu.cn</u> (Y.X.) or <u>snzhongwei@outlook.com</u> (W.Z.)

N6-methyladenosine (m⁶A) is the most prevalent post-transcriptional modification in eukaryotic cells, playing a crucial role in regulating various biological processes. Dysregulation of m⁶A status is implicated in multiple human diseases, including cancer. Several prediction frameworks have been proposed for high-accuracy identification of putative m⁶A sites; however, none have targeted direct prediction of cancer-associated (or pro-cancer) m⁶A residues at the base-resolution level. Here, we report m6A-CAPred, a computational tool for predicting pro-cancer m6A sites learned from a comprehensive dataset of experimentally validated m⁶A sites. Our findings indicate that sequence information alone achieves limited performance. However, by leveraging domain-related knowledge (genome-derived features), m6A-CAPred successfully captures distinct domain characteristics between potentially pro-cancer m⁶A modifications and normal ones, with an average AUROC of 0.885 tested on an independent dataset. Leveraging the power of machine learning, we then performed transcriptome-wide prediction for large-scale screening of potentially pro-cancer m⁶A sites. Somatic variants derived from 33 types of TCGA cancer projects were extracted for additional validation, and the results showed that SNP density clearly differentiated the predicted pro-cancer and normal m6A sites. The m6A-CAPred web server is freely accessible at: www.rnamd.org/m6A-CAPred.

Keywords: N6-methyladenosine; Machine-learning; Epitranscriptomic

32

15

Citation: To be added by editorial staff during production.

Academic Editor:

- Received: date Revised: date
- Accepted: date
- Published: date

58

59

60

Copyright: © 2024 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1. Introduction

Exploration of RNA epigenetics has led to the discovery of more than 170 types of RNA modification (1). Among them, N6-methyladenosine (m⁶A), the most prevalent marker in messenger RNA and long noncoding RNA (2), has been identified as an abundant and dynamically regulated modification (3). m⁶A was first discovered in poly-A RNA in 1974 (4), and since then, it has been identified in various eukaryotic organisms. Over the past decades, multiple studies have underscored the biological significance of m⁶A modification in various aspects, including but not limited to, regulation of mRNA translation (5), RNA-protein interaction (6), microRNA (miRNA) processing (7), DNA damage response, and regulation of RNA stability (8). In the context of cancer, m⁶A modification has been demonstrated to be a key factor due to its implications in cancer metastasis (9), abnormal mRNA expression levels (10), and immune evasion (11).

Dysregulation of m⁶A has been reported to play an essential role in tumor proliferation and invasion (12,13), including liver cancer (14,15), lung cancer (16) and breast cancer (17,18). It is apparent that accurately identifying the locations of cancer-associated (or procancer) m⁶A modifications is crucial for the study and understanding of the downstream effects of RNA modification in biology.

The first whole transcriptome m⁶A profiling approach, m⁶A-seq (MeRIP-seq), was developed in 2012 (19,20) to locate m⁶A sites. It utilizes antibody-based enrichment of the m⁶A signal to detect and identify regions containing m⁶A modification, with a resolution of approximately 150 nucleotides. Recent advancements have also been made in integrating ultraviolet cross-linking, enzymatic activity, and domain fusion to achieve high resolution or even base-resolution m⁶A detection. These techniques include miCLIP/m⁶A-CLIP-seq (21,22), m⁶A-REF-seq (23), and DART-seq (24). Nevertheless, these alternative approaches require more complex experimental procedures compared to m⁶A-seq and have thus far been utilized in fewer biological contexts.

To date, a number of epitranscriptome databases (1,25-30) and computational approaches (31-38) have been developed for large-scale collection and accurate identification of RNA modifications. For m⁶A methylation, pioneer studies such as SRAMP (17) and iRNA toolkits (39-41) were developed based on combination of sequence-derived information. WHISTLE (42) was a high-accuracy predictor that firstly integrating domain knowledges (genomic features) into m⁶A prediction framework. And most recently, the deep learning-based approaches were also proved to be another powerful way for m⁶A prediction (43-45). These works together have greatly facilitated the in silico identification of modified residues. However, these computational models only report whether a nucleotide is modified or not, without differentiating the potentially functional such as pro-cancer m⁶A sites.

Here, we present m6A-CAPred, a computational framework for accurately classifying potentially pro-cancer and normal m⁶A modification sites at the base-resolution level. By learning the domain characteristics of m⁶A modification revealed from a large array of cancer and normal tissues contexts, m6A-CAPred achieved an average AUROC of 0.894 tested on independent datasets. Based on the proposed model, we then conducted a large-scale prediction on ~430,000 experimentally validated m⁶A sites to identify potentially cancer-associated m⁶A residues. Independent validation test showed that SNP density can be clearly differentiated between the predicted pro-cancer and normal m⁶A sites. To share our findings, we developed a user-friendly web interface for the proposed framework, which comprises the following major components: (i) a database of 111,937 high-confidence m⁶A sites annotated with cancer context labels, which can be extracted for further analysis or model development, and (ii) a web server for high-accuracy prediction of potentially pro-cancer m⁶A sites from user-provided data. The m6A-CAPred is freely accessible at: <u>www.rnamd.org/m6A-CAPred</u>.

2. Materials and Methods

2.1 Benchmark dataset

m6A-CAPred was proposed to predict the pro-cancer m⁶A methylation sites at baseresolution level. The positive dataset (P) and negative dataset (N) were all high-confidence experimentally validated m⁶A sites collected from m⁶A-Atlas database (with record time > 2, a total of 111,937 sites) (46). The dataset P (pro-cancer m⁶A sites) and N (normal m⁶A sites) were further classified by checking whether they localized in m⁶A-enriched regions from 25 cancer cell lines and 23 normal tissue samples collected from m6A-TSHub (47) (**Supplementary Sheet S1**). It may be worth noting that, the m⁶A sites that did not occur in either cancer or normal conditions were identified as background noise and were consequently excluded from further experiments.

Specifically, the difference ratio (DR) was calculated to represent the observed difference of a m⁶A site between cancer and normal conditions:

$$DR = \frac{P_{Cancer} - P_{Normal}}{2} \tag{1}$$

Where P_{Cancer} represents the percentage of occurrence of an m⁶A site in the cancer cell lines, while P_{Normal} represents that of normal-condition samples. The DR ranges from -0.5 to 0.5, with 0.5 indicating the most cancer-associated m⁶A sites and -0.5 indicating m⁶A sites totally observed in normal samples. A DR of zero represents no difference between cancer and normal contexts. **Figure 1** shows the overall distribution of DRs of all highconfidence m⁶A sites, with a majority of m⁶A sites showing no significant differences between cancer and normal conditions.

Figure 1. The difference ratio (DR) was calculated to represent the observed difference of a m⁶A site between cancer and normal conditions. Only a small number of m⁶A sites show differences under these two contexts and can be further classified into positive and negative training datasets.

Based on the DR value, the positive (P) and negative (N) datasets for model training and testing were selected by identifying the m⁶A residues most associated with cancer and normal conditions using the Two-tailed test. The pro-cancer m⁶A sites (P) were defined as the top 2.5% of right-sided (cancer-associated) m⁶A sites with a DR > 0.165. Conversely, the normal m6A sites (N) were identified as the top 2.5% of left-sided (normal) m⁶A sites with a DR < -0.38. Specifically, a limited number of base-resolution m⁶A sites were selected as positive (cancer-associated, 2,660 sites) and negative (normal, 2,959 sites) datasets. The negative sites were randomly chosen to maintain a 1:1 P-to-N ratio. For performance evaluation, 80% of the dataset was randomly selected as training data, while the remaining 20% was used for independent testing.

To test the SNP density around the predicted pro-cancer m⁶A sites, we collected a total of 2,264,915 cancer somatic variants from 33 different human cancer types in the Cancer Genome Atlas (TCGA) database (version v35) (48). The detailed information of the SNP datasets can be found in **Supplementary Sheet S2**.

2.2 Sequence-derived feature

In our study, five different sequence encoding methods were employed to compose three combinations, including Nucleotide Chemical Property (NCP), position-specific nucleotide propensity (PSNP), Nucleotide Density (ND), Electron-ion interaction potential (EIIP) and pseudo-EIIP (PseEIIP).

Genes 2024, 15, x FOR PEER REVIEW

The first encoding method NCP categorizes nucleotides into three groups based on their distinct structural chemical properties (49). Primarily, the number of rings in the nucleotides is considered: adenosine and guanosine contain two rings, while cytidine and uridine consist of only one ring. Secondly, adenosine and cytidine are characterized by the presence of an amino group, whereas guanosine and uridine feature a keto group. Lastly, cytidine and guanosine demonstrate stronger hydrogen bonding than adenosine and uridine. Utilizing these properties, the i-th nucleotide in sequence S can be encoded as a vector Si = (xi, yi, zi):

$$x_{i} = \begin{cases} 1 \text{ if } s_{i} \in \{A, G\} \\ 0 \text{ if } s_{i} \in \{C, U\} \end{cases}, y_{i} = \begin{cases} 1 \text{ if } s_{i} \in \{A, C\} \\ 0 \text{ if } s_{i} \in \{G, U\} \end{cases}, z_{i} = \begin{cases} 1 \text{ if } s_{i} \in \{A, U\} \\ 0 \text{ if } s_{i} \in \{C, G\} \end{cases}$$
(2)

PSNP refers to the variation in the frequency of nucleotides at specific positions in RNA sequences between positive and negative datasets. By calculating the frequency of the appearances of A, C, G, and T at the i-position respectively, two matrices with 4×41 dimensions, namely Z_{plus} and Z_{minus} , were obtained. Z_{plus} was derived from the sequence of all positive data, while Z_{minus} was derived from the sequence of all negative data. In this context, the Position-Specific Nucleotide Propensity (PSNP) matrices were denoted as Z_{PSNP} :

$$Z_{\rm PSNP} = Z_{\rm plus} - Z_{\rm minus} \tag{3}$$

ND represents the distribution and cumulative frequency of nucleotides at each position. The density of the ith nucleotide is calculated as the number of nucleotides of the same type appearing before the (i + 1)th position, divided by i. For the sequence 'AGAUUCA', the density of 'A' is 1 (1/1), 0.67 (2/3), and 0.43 (3/7) at the 1st, 3rd, and 7th positions, respectively.

The EIIP values of nucleotides was originally proposed by Nair et al in 2006 (50). Specifically, each nucleotide is encoded as a numeric value that represents its electron-ion interaction potential (**Supplementary Table S1**). Additionally, the pseudo-EIIP (PseEIIP) was calculated by multiplying the sum of the numeric value of tri-nucleotides by their frequency in a given sequence.

In the following section, we will explore which combination of encoding strategies yields the best performance for model development.

2.3 Genome-derived feature

Genome-derived feature guided by domain characteristics have been encoded as an effective feature type that contributing to the performance of prediction models in classifying modified or unmodified RNA residues (51). In our work, we try to capture the distinct patterns between pro-cancer and normal m⁶A modification sites. Specifically, 54 domain (genomic) features were extracted for both pro-cancer and normal base-resolution m⁶A sites. These genomic properties including dummy variables (1: overlapped; 0: no overlapped) indicating overlapped regions (such as CDS, 5'UTR), counting of adjacent input site and neighboring A, region length, conservation score (PhastCons (52) and fitCons (53)), RNA secondary structures predicted by RNAfold package (54), and distance to regions' 5'/3' ends. The 'TxDb.Hsapiens.UCSC.hg38.knownGene' annotation file was used to extract the corresponding human genomic regions. Please refer to **Supplementary Table S2** for more details about the genomic features considered in the m6A-CAPred model.

2.4 Machine-learning approach used for model construction

Evolutionary Bioinformatics

Support Vector Machine (SVM) has been widely used in previous prediction model with satisfactory performance (55-57). We used the R language interface of LIBSVM (58) to build the final m6A-CAPred model, the radial basis function was set as kernel, with other parameters using the default setting.

2.5 Performance evaluation

For performance evaluation, we applied the following evaluation metrics. In general, Receiver Operating Characteristic (ROC) curve (sensitivity against 1-specificity) and the area under the ROC curve (AUROC) were used as the primary performance evaluation metrics. In addition, we also calculated sensitivity (Sn), specificity (Sp), Matthew's Correlation Coefficient (MCC), and overall accuracy (ACC) as additional indicators for evaluating the reliability of the model. A 5-fold cross-validation was applied on training datasets, while the testing datasets was used for independent testing. Only the m⁶A sites that do not include as training step were selected for independent testing purpose.

$$Sn = \frac{TP}{TP + FN} \tag{4}$$

$$Sp = \frac{TN}{TN + FP}$$
(5)

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}}$$
(6)

$$C = \frac{TP + TN}{TP + TN + FP + FN}$$
(7)

Among them, TP represents true positive, while TN represents true negative; FP stands for the number of false positive, and FN stands for the number of false negative.

2.6 Website construction

m6A-CAPred web interfaces were constructed by using HyperText Markup Language (HTML), Hypertext Preprocessor (PHP), and Cascading Style Sheets (CSS). All metadata was stored using MySQL tables. To present statistical diagrams, EChars was exploited.

3. Results

3.1. Different sequence encoding approaches used for prediction of pro-cancer m⁶A sites

To try to capture the distinct patterns of pro-cancer m⁶A sites, we applied different sequence-based feature extracting approaches for model development and tested their performances. Firstly, we tried to explore whether there are significant differences in the primary RNA sequences between pro-cancer and normal m⁶A sites. The 41nt RNA sequence centered on each m⁶A site was extracted and encoded using combined sequence-based approaches. We considered a total of three combination: NCP + PSNP, NCP + ND + EIIP, and EIIP + PseEIIP. The Support Vector Machine (SVM) was applied to represent traditional machine learning framework. The results (**Table 1**) showed that sequence-based information only achieved very limited performances, with the best performance achieved by combination of EIIP and PseEIIP (AUROC of 0.577), suggesting that sequence information alone cannot effectively classify the pro-cancer m⁶A residues from the normal ones.

Genes 2024, 15, x FOR PEER REVIEW

		•		0 11	
Encoding		In	dependent te	est	
approach	Sn	Sp	ACC	MCC	AUROC
NCP + PSNP	58.3%	49.1%	53.7%	0.074	0.550
NCP + ND + EIIP	52.8%	56.0%	54.4%	0.088	0.566
EIIP + PseEIIP	54.1%	55.5%	54.8%	0.096	0.577

Table 1. Performance evaluation using different sequence-based encoding approaches

Note: we randomly selected 80% of dataset as training dataset and the performance of predictors were evaluated by the rest of 20% of dataset as independent testing data, only data not included in training step was selected for independent testing purpose.

3.2 Classifying pro-cancer m⁶A sites using genome-derived information

We next tried to train the classifier by adding genome-derived information, with the integrated model combining sequence-based and 54 additional genomic knowledges (**Supplementary Table S2**). We found that genomic features greatly enhanced the sequence-based model, improving by 30.8% to 31.9% (**Table 2**). Specifically, the integrated model (genomic + EIIP + PseEIIP) achieved the best prediction performance with an AUROC of 0.885, followed by genomic + NCP + ND + EIIP (AUROC of 0.876) and genomic + NCP + PSNP (AUROC of 0.869), tested on independent datasets. Our results suggested that domain knowledges may be the key factor to capture the distinct patterns between pro-cancer and normal m⁶A sites, indicating the reliability of the proposed m6A-CAPredmodel.

		5-fold	l cross va	alidation	n		Inc	lepende	nt test	
Method	Sn	Sp	ACC	MC C	AURO C	Sn	Sp	ACC	MC C	AURO C
Integrate d model 1*	78.4 %	78.5 %	78.4 %	0.569	0.872	79.1 %	79.7 %	79.4 %	0.588	0.869
Integrate d model 2*	78.8 %	78.3 %	78.6 %	0.571	0.869	78.9 %	80.1 %	79.5 %	0.590	0.876
Integrate d model 3*	80.2 %	80.7 %	80.4 %	0.608	0.884	80.8 %	79.3 %	80.1 %	0.602	0.885

Table 2. Performance evaluation using integrated encoding methods

Note: Integrated model 1*: NCP + PSNP + genomic feature; Integrated model 2*: NCP + ND + EIIP + genomic feature; Integrated model 3*: EIIP + PseEIIP + genomic feature

3.3 SNP density analysis clearly differentiated the predicted pro-cancer and normal m⁶A sites

Leveraging the proposed machine learning-powered classifier, we then performed a large-scale prediction on a total of 427,586 experimentally validated m⁶A sites at base-resolution level (46). We applied different cut-off values (0.3 to 0.9) for classifying the potentially pro-cancer m⁶A residues and calculated the SNP density around pro-cancer and normal m⁶A sites, respectively (**Table 3**). Specifically, the cancer-related somatic variants were extracted from 33 types of TCGA cancer projects, and the SNP density was calculated within a ±2 bp flanking window of each base-resolution m⁶A site, with a higher

density value indicating a stronger association with cancer through the disruption of these m⁶A methylation sites. We found that the SNP density of cancer somatic variants around the predicted pro-cancer m⁶A sites was significantly higher than that of the normal m⁶A group across all cutoff values ranging from 0.3 to 0.9 (**Table 3**). These results suggest that the m⁶A sites classified into the pro-cancer group using m6A-CAPred are generally more associated with cancer, thereby demonstrating the effectiveness of our newly proposed m6A-CAPred framework.

Mutation type	Cut- off	# of predicted pro-cancer m ⁶ A sites	# of predicted normal m ⁶ A sites	SNPs around pro-cancer m ⁶ A sites (within ± 2 bp motif)	SNPs around normal m ⁶ A sites (within ± 2 bp motif)	<i>P-</i> Value
2	0.3	169,680	257,906	17,366 (10.23%)	25,890 (10.04%)	*
	0.4	143,216	284,370	15,174 (11.60%)	28,080 (9.87%)	***
TOCA	0.5	121,623	305,963	133,35 (10.96%)	199,09 (9.78%)	***
somatic	0.6	103,077	324,509	116,44 (11.30%)	31,603 (9.74%)	***
variant	0.7	84,787	342,799	9,668 (11.40%)	33,588 (9.80%)	***
	0.8	64,245	363,341	7,257 (11.30%)	35,992 (9.91%)	***
	0.9	36,637	390,949	4,114 (11.23%)	39,148 (10.01%)	***

Table 3. The SNP density test of TCGA somatic variants around different m ^o A group

Note: * stands for *P*-value < 0.05; ** stands for *P*-value < 0.01; and *** stands for *P*-value < 0.001.

3.4 Web interface

We developed an online platform to share our findings and facilitate access to the newly proposed model (**Figure 2**). The online resource comprises two major components: i) a database containing 111,937 experimentally validated m⁶A sites, annotated with cancer and normal context labels. Users can filter the database by difference ratio, and the returned results present detailed information for each base-resolution m⁶A site, including chromosome position, experimental sources, profiling technique, gene symbol, gene type, Ensembl ID, and cancer/normal context labels. ii) Users can upload their query m⁶A sites with genome coordinates to the online web server; the returned results indicate whether the predicted m⁶A sites can be classified into pro-cancer or normal groups. All results can be downloaded freely.

Genes 2024, 15, x FOR PEER REVIEW

m6A-CA	Pred				10	Home 🛢	Table 🧮 Tool 🔤 Contact	ID		m6A_hg19_101004
				D	atabaco	homen	200	Seqnames		chr5
Welcon	ne to n	16A-C	APrec	1 0	atabase	nomep	aye	Position		34918534
								Strand		+
S Table Server				eb Server	Gene		BRIX1			
🗘 An mé	6A Database	with cancer-r	elated infor	rmation	i Predi	ction of pro-cane	er m6A site from user-uploaded	Gene Type		protein_coding
datasets			atasets	Ensembl ID	e	ENSG00000113460				
				Difference F	Ratio	0.18				
Model Described the prediction model			✿ D ⑦ Download th	ownload e database information	Source		GSE122961;MAZTER-se -seq;Homo_sapiens;HEK s;HSPC;ribo-d0			
								A549		0
								H1299		•
Tilter: Use	ers ca	n filte	r the	data	base by	differe	nce ratio	BCa5637		
Pro-cancer m6A si	ites (Top 2.5%)	Normal m	6A sites (To	p 2.5%)	Difference	atio: O	HT29		
Pro-cancer m6A si Pro-cancer m6A si	ites (Top 2.5% ites (Top 5% -	- 5%) 10%)	Normal m	6A sites (To 6A sites (To	p 2.5% - 5%) p 5% - 10%)	-0.5	© 0.5 © Got	HCT116	The cancer and normal	
www.10.1 entries	Click	the ID	to a		e detaile	dinfo		OCI-Ly1	context labels indicate that	•
10	CIICK	Pasition	to at	Gene	Gene Trans	Difference Ratio	Search:	U251	the site is marked in red if it	0
m6A_Jg19_100628	chr5	1038662	4	NKD2	protein_coding	0.18	Pro-cancer mfA sites (Top 2.5%)	GOS-3	was identified under these	0
m6A_hg19_100629	clu5	1038670	+	NKD2	protein_coding	0.18	Pro-cancer mfiA siles (Top 2.5%)	iSLK.219	conditions	0
								MOLM13	Contaillonio.	
m6A-CAPred: A	web server f	for high-accura	acy prediction	on of poten	tially pro-cancer m	⁶ A sites from use	r-provided data.	1/205		
								Mel624		
Input Data (genoo	ne coordinates	i):			🖺 Upoad File (ge	enome coordinates	in txt format):	PCC923		
sequences position chr17 5608443-	strand 4 -				6			HEC 1 A		-
chr6 1003086 chr6 6633112 chr6 1336506	38 - 7 - 6 -				±+File Ex	emple		HEC-I-A		
de11 27351110 de12 13301212	6 + 23 +							Lung-4		-
chr29 3226762 chr1 5522399 chr3 1418698	7 - 3 - 0 -				Clear		Suberit	Lung-2	2	
*Neta: The wife server a	unnistly does not a	eppiet job schmissis	a through 2%-	r and iffed, We				Cerebellum	-7	
windows are enabled.	arong provider, is y			and paperty.				Rectum-4		
		Onli	ne w	eb-se	erver an	d predi	cted results	Esophagus-	4	
Prediction	Result							Rectum-5		
							Download	Cerebrum-	6	
Segran	nes		Position		Strand		Cancer Related	Muscle-3		
del del		55223993				cancer-rela	red	Esophagus-	3	0
abel		44687247				normal		Colon-3		
								Entern 3		

Figure 2. m6A-CAPred online resources. The online resource consists of two components: i) a database featuring 111,937 experimentally validated m⁶A sites, annotated with difference ratio and context labels. ii) Users can also upload their query m⁶A sites with genome coordinates to the online web server, which returns results indicating whether the predicted m⁶A sites are classified as procancer or normal.

4. Discussion

To date, the regulatory roles and disease/cancer associations of N6-methyladenosine (m⁶A) have been largely elucidated. Despite the development of numerous bioinformatic tools aimed at facilitating m⁶A prediction, none have specifically targeted the accurate prediction of cancer-associated m⁶A sites. To address this gap, we developed a predictive framework to distinguish potentially pro-cancer m⁶A sites from normal ones. Our findings demonstrate that genome-derived information significantly enhances the performance of traditional sequence-based models. The m6A-CAPred web server is freely accessible, providing a valuable resource for researchers interested in m⁶A modifications related to various cancer types. By accurately identifying pro-cancer m⁶A sites, m6A-CAPred contributes to a more comprehensive understanding of m⁶A modification's role in cancer development, which may aid in identifying potential therapeutic targets. Further investigation is essential to fully elucidate the mechanisms underlying m⁶A modification dysregulation in cancer and to explore the clinical implications of our findings.

2

3			
4 5		Supplementary Materials: Supplemental Information is available online.	
6			
7 8 9		Author Contributions: Conceptualization, Y.X. and W.Z.; methodology, Z.C., J.H. and S.C.; software, X.W.; validation, Y.L.; writing—original draft preparation, Z.C. and J.H.; writing—review and editing, Y.X.; supervision, Y.X.; funding acquisition, Y.X. All authors have read and agreed to the published version of the manuscript.	
11		Funding: Project of Key research and development Plan of Yuzhou Science and Technology Bureau	
12 12		(NO.2023103070)	
13 14 15		Informed Consent Statement: Not applicable.	
16		Data Availability Statement: The original contributions presented in the study are included in the	
17 18		article/Supplementary Material; further inquiries can be directed to the corresponding author.	
19		Conflicts of Interest: The authors declare no conflicts of interest.	
20 21	Refere	ences	301
22	1.	Boccaletto, P., Machnicka, M.A., Purta, E., Piatkowski, P., Baginski, B., Wirecki, T.K., de Crecy-Lagard, V., Ross, R., Limbach,	302
23 24		P.A., Kotter, A. et al. (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res, 46,	
25		D303-D307.	
26 27	2.	Meyer, K.D. and Jaffrey, S.R. (2017) Rethinking m(6)A Readers, Writers, and Erasers. Annu Rev Cell Dev Biol, 33, 319-342.	305
27 28	3.	Niu, Y., Zhao, X., Wu, Y.S., Li, M.M., Wang, X.J. and Yang, Y.G. (2013) N6-methyl-adenosine (m6A) in RNA: an old	306
29		modification with a novel epigenetic function. <i>Genomics Proteomics Bioinformatics</i> , 11 , 8-17.	
30	4	Desrosiers, R., Friderici, K. and Rottman, F. (1974) Identification of methylated nucleosides in messenger RNA from	308
31 32		Novikoff hepatoma cells. Proc Natl Acad Sci U.S.A. 71, 3971-3975	
33	5	Meyer, K.D. and Jaffrey, S.R. (2014) The dynamic epitranscriptome: N6-methyladenosine and gene expression control. <i>Nat</i>	310
34 25		Rev Mol Cell Biol. 15, 313-326	
36	6.	Liu, N., Dai, O., Zheng, G., He, C., Parisien, M. and Pan, T. (2015) N(6)-methyladenosine-dependent RNA structural switches	312
37		regulate RNA-protein interactions. <i>Nature</i> , 518 , 560-564.	
38 20	7.	Alarcon, C.R., Lee, H., Goodarzi, H., Halberg, N. and Tavazoje, S.F. (2015) N6-methyladenosine marks primary microRNAs	314
40		for processing. <i>Nature</i> , 519 , 482-485.	
41	8.	Xiang, Y., Laurent, B., Hsu, C.H., Nachtergaele, S., Lu, Z., Sheng, W., Xu, C., Chen, H., Ouvang, I., Wang, S. et al. (2017) RNA	316
42 43		m(6)A methylation regulates the ultraviolet-induced DNA damage response. <i>Nature</i> , 543 , 573-576.	
44	9.	Yin, H., Zhang, X., Yang, P., Zhang, X., Peng, Y., Li, D., Yu, Y., Wu, Y., Wang, Y., Zhang, I. <i>et al.</i> (2021) RNA m6A methylation	318
45		orchestrates cancer growth and metastasis via macrophage reprogramming. <i>Nat Commun.</i> 12 , 1394.	
46 47	10.	Wu, Y., Chen, X., Bao, W., Hong, X., Li, C., Lu, L., Zhang, D. and Zhu, A. (2022) Effect of Humantenine on mRNA m6A	320
48		Modification and Expression in Human Colon Cancer Cell Line HCT116. <i>Genes</i> (Basel). 13 .	
49 50	11.	Liu, Z., Wang, T., She, Y., Wu, K., Gu, S., Li, L., Dong, C., Chen, C. and Zhou, Y. (2021) N(6)-methyladenosine-modified	322
50 51		circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-	
52		I 1 in non-small cell lung cancer Mol Cancer 20 105	
53	12	Sun T. Wu R and Ming I. (2019) The role of m6A RNA methylation in cancer. <i>Biomed Pharmacother</i> , 112 , 108613	325
54 55	13	An Y and Duan H (2022) The role of m6A RNA methylation in cancer metabolism <i>Mol Cancer</i> 21 14	326
56	14	XII O Ren N Ren I Vang V Pan I and Shang H (2024) RNA m6A mathylation regulators in liver cancer Caucar Call	320
57	17.	Tut 24 1	527
58 59			

2

Genes 2024, 15, x FOR PEER REVIEW

3 ⊿			
5	15.	Wang, J., Yu, H., Dong, W., Zhang, C., Hu, M., Ma, W., Jiang, X., Li, H., Yang, P. and Xiang, D. (2023) N6-Methyladenosine-	329
6		Mediated Up-Regulation of FZD10 Regulates Liver Cancer Stem Cells' Properties and Lenvatinib Resistance Through	
7 8		WNT/beta-Catenin and Hippo Signaling Pathways. <i>Gastroenterology</i> , 164 , 990-1005.	
9	16.	Zhang, O. and Xu, K. (2023) The role of regulators of RNA m(6)A methylation in lung cancer. <i>Genes Dis</i> , 10 , 495-504.	332
10	17.	Zhou, Y., Zeng, P., Li, Y.H., Zhang, Z. and Cui, O. (2016) SRAMP: prediction of mammalian N6-methyladenosine (m6A)	333
11 12		sites based on sequence-derived features. <i>Nucleic Acids Res</i> , 44 , e91.	
13	18.	Zhang, C., Zhi, W.I., Lu, H., Samanta, D., Chen, I., Gabrielson, E. and Semenza, G.L. (2016) Hypoxia-inducible factors	335
14 15		regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast	
16		cancer cells. <i>Oncotarget</i> , 7, 64527-64542.	
17	19.	Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-	338
18 19		Hirsch, J., Amariglio, N., Kupiec, M. et al. (2012) Topology of the human and mouse m6A RNA methylomes revealed by	
20		m6A-seq. <i>Nature</i> , 485 , 201-206.	
21	20.	Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E. and Jaffrey, S.R. (2012) Comprehensive analysis of mRNA	341
22		methylation reveals enrichment in 3' UTRs and near stop codons. Cell, 149, 1635-1646.	
24	21.	Linder, B., Grozhik, A.V., Olarerin-George, A.O., Meydan, C., Mason, C.E. and Jaffrey, S.R. (2015) Single-nucleotide-	343
25 26		resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods, 12, 767-772.	
20	22.	Ke, S., Pandya-Jones, A., Saito, Y., Fak, J.J., Vagbo, C.B., Geula, S., Hanna, J.H., Black, D.L., Darnell, J.E., Jr. and Darnell, R.B.	345
28		(2017) m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify	
29 30		cytoplasmic turnover. <i>Genes Dev</i> , 31 , 990-1006.	
31	23.	Zhang, Z., Chen, L.Q., Zhao, Y.L., Yang, C.G., Roundtree, I.A., Zhang, Z., Ren, J., Xie, W., He, C. and Luo, G.Z. (2019) Single-	348
32		base mapping of m(6)A by an antibody-independent method. Sci Adv, 5, eaax0250.	
33 34	24.	Meyer, K.D. (2019) DART-seq: an antibody-free method for global m(6)A detection. Nat Methods, 16, 1275-1280.	350
35	25.	Song, B., Chen, K., Tang, Y., Wei, Z., Su, J., de Magalhaes, J.P., Rigden, D.J. and Meng, J. (2021) ConsRM: collection and	351
36		large-scale prediction of the evolutionarily conserved RNA methylation sites, with implications for the functional	
37 38		epitranscriptome. Brief Bioinform, 22.	
39	26.	Xuan, J.J., Sun, W.J., Lin, P.H., Zhou, K.R., Liu, S., Zheng, L.L., Qu, L.H. and Yang, J.H. (2018) RMBase v2.0: deciphering the	354
40		map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res, 46, D327-D334.	
41	27.	Bao, X., Zhang, Y., Li, H., Teng, Y., Ma, L., Chen, Z., Luo, X., Zheng, J., Zhao, A., Ren, J. et al. (2023) RM2Target: a	356
43		comprehensive database for targets of writers, erasers and readers of RNA modifications. Nucleic Acids Res, 51, D269-D279.	
44 45	28.	Luo, X., Li, H., Liang, J., Zhao, Q., Xie, Y., Ren, J. and Zuo, Z. (2021) RMVar: an updated database of functional variants	358
46		involved in RNA modifications. Nucleic Acids Res, 49, D1405-D1412.	
47	29.	Wang, X., Zhang, Y., Chen, K., Liang, Z., Ma, J., Xia, R., de Magalhaes, J.P., Rigden, D.J., Meng, J. and Song, B. (2024)	360
48 49		m7GHub V2.0: an updated database for decoding the N7-methylguanosine (m7G) epitranscriptome. Nucleic Acids Res, 52,	
50		D203-D212.	
51	30.	Song, B., Wang, X., Liang, Z., Ma, J., Huang, D., Wang, Y., de Magalhaes, J.P., Rigden, D.J., Meng, J., Liu, G. et al. (2023)	363
52 53		RMDisease V2.0: an updated database of genetic variants that affect RNA modifications with disease and trait implication.	
54		Nucleic Acids Res, 51 , D1388-D1396.	
55 56	31.	Qiu, W.R., Jiang, S.Y., Xu, Z.C., Xiao, X. and Chou, K.C. (2017) iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites	366
50 57		by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget, 8, 41178-41188.	
58	32.	Chen, W., Song, X., Lv, H. and Lin, H. (2019) iRNA-m2G: Identifying N(2)-methylguanosine Sites Based on Sequence-	368
59 60		Derived Information. <i>Mol Ther Nucleic Acids</i> , 18 , 253-258.	

Evolutionary Bioinformatics

11 of 12

1	
2	
3	
4	
5	
6)
7	
8	
9	
1	0
1	1
1	2
1	3
1	4
1	5
1	6
1	/
1	8
1	9
2	0
2	
2	2
2	3
2	4
2	5
2	0
2	/
2	0
2	.У Л
2	1
ך ג	2
ך ג	2
ך ג	כ ⊿
ך ג	5
ך ג	6
3	7
3	, 8
3	9
4	0
4	1
4	2
4	3
4	4
4	5
4	6
4	7
4	8
4	9
5	0
5	1
5	2
5	3

Genes 2024, 15, x FOR PEER REVIEW

33.	Zhai, J., Song, J., Cheng, Q., Tang, Y. and Ma, C. (2018) PEA: an integrated R toolkit for plant epitranscriptome analysis. <i>Bioinformatics</i> , 34 , 3747-3749.	370
34.	Jiang, J., Song, B., Tang, Y., Chen, K., Wei, Z. and Meng, J. (2020) m5UPred: A Web Server for the Prediction of RNA 5- Methyluridine Sites from Sequences. <i>Mol Ther Nucleic Acids</i> , 22 , 742-747.	372
35.	Körtel, N., Rücklé, C., Zhou, Y., Busch, A., Hoch-Kraft, P., Sutandy, F.X.R., Haase, J., Pradhan, M., Musheev, M., Ostareck, D. <i>et al.</i> (2021) Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning. <i>Nucleic Acids Research</i>	374
36.	Xiong, Y., He, X., Zhao, D., Tian, T., Hong, L., Jiang, T. and Zeng, J. (2021) Modeling multi-species RNA modification through multi-task curriculum learning. <i>Nucleic Acids Research</i> .	377
37.	Huang, J., Wang, X., Xia, R., Yang, D., Liu, J., Lv, Q., Yu, X., Meng, J., Chen, K., Song, B. <i>et al.</i> (2024) Domain-knowledge enabled ensemble learning of 5-formylcytosine (f5C) modification sites. <i>Computational and Structural Biotechnology Journal</i> , 23 , 3175-3185.	379
38.	Liang, Z., Zhang, L., Chen, H., Huang, D. and Song, B. (2022) m6A-Maize: Weakly supervised prediction of m(6)A-carrying transcripts and m(6)A-affecting mutations in maize (Zea mays). <i>Methods</i> , 203 , 226-232.	382
39.	Chen, W., Ding, H., Zhou, X., Lin, H. and Chou, K.C. (2018) iRNA(m6A)-PseDNC: Identifying N(6)-methyladenosine sites using pseudo dinucleotide composition. <i>Anal Biochem</i> , 561-562 , 59-65.	384
40.	Liu, K. and Chen, W. (2020) iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications. <i>Bioinformatics</i> , 36 , 3336-3342.	386
41.	Chen, W., Feng, P., Ding, H., Lin, H. and Chou, K.C. (2015) iRNA-Methyl: Identifying N(6)-methyladenosine sites using pseudo nucleotide composition. <i>Anal Biochem</i> , 490 , 26-33.	388
42.	Liu, L., Song, B., Chen, K., Zhang, Y., de Magalhaes, J.P., Rigden, D.J., Lei, X. and Wei, Z. (2022) WHISTLE server: A high- accuracy genomic coordinate-based machine learning platform for RNA modification prediction. <i>Methods</i> , 203 , 378-382.	390
43.	Zou, Q., Xing, P., Wei, L. and Liu, B. (2019) Gene2vec: gene subsequence embedding for prediction of mammalian N (6)- methyladenosine sites from mRNA. <i>RNA</i> , 25 , 205-218.	392
44.	Chen, Z., Zhao, P., Li, F., Wang, Y., Smith, A.I., Webb, G.I., Akutsu, T., Baggag, A., Bensmail, H. and Song, J. (2020) Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences. <i>Brief Bioinform</i> , 21 , 1676-1696.	394
45.	Huang, D., Song, B., Wei, J., Su, J., Coenen, F. and Meng, J. (2021) Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data. <i>Bioinformatics</i> , 37 , i222-i230.	397
46.	Tang, Y., Chen, K., Song, B., Ma, J., Wu, X., Xu, Q., Wei, Z., Su, J., Liu, G., Rong, R. <i>et al.</i> (2021) m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. <i>Nucleic Acids Res</i> , 49 , D134-D143.	399
47.	Song, B., Huang, D., Zhang, Y., Wei, Z., Su, J., Pedro de Magalhaes, J., Rigden, D.J., Meng, J. and Chen, K. (2023) m6A- TSHub: Unveiling the Context-specific m(6)A Methylation and m(6)A-affecting Mutations in 23 Human Tissues. <i>Genomics</i> <i>Proteomics Bioinformatics</i> , 21 , 678-694.	401
48.	Tomczak, K., Czerwińska, P. and Wiznerowicz, M. (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. <i>Contemporary oncology</i> , 19 , A68.	404
49.	Yang, H., Lv, H., Ding, H., Chen, W. and Lin, H. (2018) iRNA-2OM: A Sequence-Based Predictor for Identifying 2'-O- Methylation Sites in Homo sapiens. <i>J Comput Biol</i> , 25 , 1266-1277.	406
50.	Nair, A.S. and Sreenadhan, S.P. (2006) A coding measure scheme employing electron-ion interaction pseudopotential (EIIP). <i>Bioinformation</i> , 1 , 197-202.	408

Genes 2024, 15, x FOR PEER REVIEW

51.	Song, B., Tang, Y., Chen, K., Wei, Z., Rong, R., Lu, Z., Su, J., de Magalhaes, J.P., Rigden, D.J. and Meng, J. (2020) m7GHub: deciphering the location, regulation and pathogenesis of internal mRNA N7-methylguanosine (m7G) sites in human.
	Bioinformatics, 36 , 3528-3536.
52.	Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S. <i>et al.</i> (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. <i>Genome Res</i> , 15 , 1024–1050
53.	Gulko, B., Hubisz, M.J., Gronau, I. and Siepel, A. (2015) A method for calculating probabilities of fitness consequences for point mutations across the human genome. <i>Nat Genet</i> , 47 , 276-283.
54.	Lorenz, R., Bernhart, S.H., Honer Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F. and Hofacker, I.L. (2011) ViennaRNA Package 2.0. <i>Algorithms Mol Biol</i> , 6 , 26.
55.	Liu, H., Yue, D., Chen, Y., Gao, S.J. and Huang, Y. (2010) Improving performance of mammalian microRNA target prediction
56.	Chen, W., Tang, H. and Lin, H. (2017) MethyRNA: a web server for identification of N6-methyladenosine sites. <i>Journal of</i>
	Biomolecular Structure and Dynamics, 35 , 683-687.
57.	Wong, YH., Lee, TY., Liang, HK., Huang, CM., Wang, TY., Yang, YH., Chu, CH., Huang, HD., Ko, MT. and
	Hwang, JK. (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on
	sequences and coupling patterns. Nucleic Acids Research, 35, W588-W594.
58.	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27.
58.	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27.
58. Discla author to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla author to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla author to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla author to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla author to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. himer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla autho: to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla author to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla autho: to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla autho: to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla author to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla autho: to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla author to peo	sequences and coupling patterns. Nucleic Acids Research, 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual r(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.
58. Discla autho: to peo	sequences and coupling patterns. <i>Nucleic Acids Research</i> , 35 , W588-W594. Chang, CC. and Lin, CJ. (2011) LIBSVM: A library for support vector machines. <i>ACM Trans. Intell. Syst. Technol.</i> , 2 , 1-27. imer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual t(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury ple or property resulting from any ideas, methods, instructions or products referred to in the content.

ID		m6A_hg19_101004
Sequames		chr5
Position		34918534
Strand		+
Gene		BRIXI
Gene Type		protein_coding
Ensembl ID		ENSG00000113460
Difference Rati	•	0.18
Source		GSE122961;MAZTER-sec -seq;Homo_sapiens;HEK2 s;HSPC;ribo-d0
A549		0
H1299		•
BCa5637		0
HT29		0
HCT116	The cancer	0
OCI-Ly1	The cancer	•
U251	and normal	
G08-3		
ISLK-219	context labels	-
UMS	indicate that	-
Mel624	indicate that	
BGC823	the site is	
HEC-1-A		•
Lung-4	marked in red	
Lung-2	16 14	
Cerebellum-7	IT IT Was	
Rectum-4	identified	
Esophagus-4	Identified	
Rectum-5	under these	
Cerebrum-6		
Muscle-3	conditions.	0
Esophagus-3		
Colon-3		
Spleen-3		

Table S1, m6A profiling samples in cancer and normal conditions using m6A-MeRIP-seq

2	Table S1. m6A pr	profiling samples in cancer and normal conditions using m6A-MeRIP-seq			
3	Experiment ID	Paper name	Journal	Pubmed ID	CRA/GSE
4	1	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
6	2	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
7	3	Landscape and Regulation of	m6/Mol Cell	31676230	CRA001315
8	4	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
9 10	5	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
11	6	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
12	7	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
13	8	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
14	9	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
16	10	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
17	11	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
18 19	12	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
20	13	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
21	14	Landscape and Regulation of	m6/Mol Cell	31676230	CRA001315
22	15	Landscape and Regulation of	m6/Mol Cell	31676230	CRA001315
23 24	16	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
25	17	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
26	18	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
27	19	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
20 29	20	Landscape and Regulation of	m6/Mol Cell	31676230	CRA001315
30	21	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
31	22	Landscape and Regulation of	m6/Mol Cell	31676230	CRA001315
32	23	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
34	24	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
35	25	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
36	26	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
37 38	20	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
39	28	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
40	29	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
41 42	30	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
43	31	Landscape and Regulation of	m6/Mol Cell	31676230	CR A001315
44	32	Landscape and Regulation of	m6/Mol Cell	31676230	CR A001315
45	33	Landscape and Regulation of	m6/Mol Cell	31676230	CR A001315
46 47	34	Landscape and Regulation of	m6/Mol Cell	31676230	CR 4001315
48	35	Landscape and Regulation of	m6/Mol Cell	31676230	CRA001315
49	35	Landscape and Regulation of	m6/Mol Coll	31676230	CRA001313
50 51	30	Landscape and Regulation of	m6/Mol Coll	31676230	CRA001313
52	20	Landscape and Regulation of		21676220	CRA001313
53	38 20	Landscape and Regulation of		21(7(220)	CRA001313
54	39 40	Landscape and Regulation of	m67 Mol Cell	31676230	CRA001315
55 56	40	Landscape and Regulation of	m67 Mol Cell	31676230	CRA001315
57	41	Landscape and Regulation of	m67 Mol Cell	316/6230	CRA001315
58	42	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
59	43	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
60	44	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315
	45	Landscape and Regulation of	m6/ Mol Cell	31676230	CRA001315

1				
2	46	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
3 ⊿	47	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
4 5	48	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
6	49	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
7	50	Landscape and Regulation of m64 Mol Cell	31676230	CRA001315
8	51	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
9 10	52	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
11	53	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
12	54	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
13 14	55	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
15	56	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
16	57	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
17	58	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
18 10	59	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
20	60	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
21	61	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
22	62	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
23	63	Landscape and Regulation of m6/Mol Cell	31676230	CR A001315
25	64	Landscape and Regulation of m6/Mol Cell	31676230	CR A001315
26	65	Landscape and Regulation of m6/Mol Cell	31676230	CP A001315
27	66	Landscape and Regulation of m6/Mol Cell	21676220	CRA001313
28	00	Landscape and Regulation of mor Mor Cell	21(7(220	CD A001215
30	0/ (9	Landscape and Regulation of m67 Mol Cell	31676230	CRA001315
31	68	Landscape and Regulation of m67 Mol Cell	31676230	CRA001315
32	69	Landscape and Regulation of m67 Mol Cell	31676230	CRA001315
33 34	70	Landscape and Regulation of m67 Mol Cell	316/6230	CRA001315
35	71	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
36	72	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
37	73	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
38 39	74	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
40	75	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
41	76	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
42	77	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
43 44	78	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
45	79	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
46	80	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
47	81	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
48 49	82	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
50	83	Landscape and Regulation of m6/Mol Cell	31676230	CRA001315
51	84	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
52	85	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
54	86	Landscape and Regulation of m6/ Mol Cell	31676230	CRA001315
55	87	Altered m6A Modification of Spe Mol Cell	31810760	GSE138730
56	88	Altered m6A Modification of Spe Mol Cell	31810760	GSE138730
57 58	89	Altered m6A Modification of Spe Mol Cell	31810760	GSE138730
59	90	Altered m6A Modification of Spe Mol Cell	31810760	GSE138730
60	91	Altered m6A Modification of Spe Mol Cell	31810760	GSE138730
	92	Altered m6A Modification of Spe Mol Cell	31810760	GSE138730
		-		

2	93	Altered m6A Modification of Spe Mol Cell	31810760	GSE138730
3	94	Altered m6A Modification of Spe Mol Cell	31810760	GSE138730
4 5	95	Topology of the human and mous Nature	22575960	GSE37002
6	96	Topology of the human and mous Nature	22575960	GSE37002
7	97	Topology of the human and mous Nature	22575960	GSE37002
8	98	Topology of the human and mous Nature	22575960	GSE37002
9 10	99	Topology of the human and mous Nature	22575960	GSE37002
11	100	Topology of the human and mous Nature	22575960	GSE37002
12	101	Perturbation of m6A writers revea Cell report	24981863	GSE55572
13 14	102	Perturbation of m6A writers revea Cell report	24981863	GSE55572
15	103	The m(6)A Methyltransferase ME Mol Cell	27117702	GSE76367
16	104	The m(6)A Methyltransferase ME Mol Cell	27117702	GSE76367
17 19	105	The m(6)A Methyltransferase ME Mol Cell	27117702	GSE76367
19	106	The m(6)A Methyltransferase ME Mol Cell	27117702	GSE76367
20	107	FTO Plays an Oncogenic Role in Cancer Cell	28017614	GSE76414
21	108	FTO Plays an Oncogenic Role in Cancer Cell	28017614	GSE76414
22 23	109	FTO Plays an Oncogenic Role in Cancer Cell	28017614	GSE76414
24	110	FTO Plays an Oncogenic Role in Cancer Cell	28017614	GSE76414
25	111	m6A RNA Methylation Regulates Cell Rep	28297667	GSE94808
26 27	112	m6A RNA Methylation Regulates Cell Rep	28297667	GSE94808
28	113	Promoter-bound METTL3 mainta Nature	29186125	GSE94613
29	114	Promoter-bound METTL3 mainta Nature	29186125	GSE94613
30 21	115	Promoter-bound METTL3 mainta Nature	29186125	GSE94613
32	116	Promoter-bound METTL3 mainta Nature	29186125	GSE94613
33	117	Promoter-bound METTL3 mainta Nature	29186125	GSE94613
34 25	118	Promoter-bound METTL3 mainta Nature	29186125	GSE94613
35 36	119	Promoter-bound METTL3 mainta Nature	29186125	GSE94613
37	120	Promoter-bound METTL3 mainta Nature	29186125	GSE94613
38	121	R-2HG Exhibits Anti-tumor Activ Cell	29249359	GSE87190
39 40	122	R-2HG Exhibits Anti-tumor Activ Cell	29249359	GSE87190
41	123	R-2HG Exhibits Anti-tumor Activ Cell	29249359	GSE87190
42	124	R-2HG Exhibits Anti-tumor Activ Cell	29249359	GSE87190
43	125	Recognition of RNA N6-methylac Nat Cell Biol	29476152	GSE90642
44	126	Recognition of RNA N6-methylac Nat Cell Biol	29476152	GSE90642
46	127	Recognition of RNA N6-methylac Nat Cell Biol	29476152	GSE90642
47	128	Recognition of RNA N6-methylac Nat Cell Biol	29476152	GSE90642
48 49	129	N6-Methyladenosine methyltransi Nat Chem Biol	30531910	GSE102336
50	130	N6-Methyladenosine methyltrans/Nat Chem Biol	30531910	GSE102336
51	131	N6-Methyladenosine methyltransi Nat Chem Biol	30531910	GSE102336
52 53	132	N6-Methyladenosine methyltrans/Nat Chem Biol	30531910	GSE102336
54	133	Histone H3 trimethylation at lysin Nature	30867593	GSE110320
55	134	Histone H3 trimethylation at lysin Nature	30867593	GSE110320
56 57	135	Histone H3 trimethylation at lysin Nature	30867593	GSE110320
57 58	136	Histone H3 trimethylation at lysin Nature	30867593	GSE110320
59	137	Histone H3 trimethylation at lysin Nature	30867593	GSE110320
60	138	Histone H3 trimethylation at lysin Nature	30867593	GSE110320
	139	Limits in the detection of m6A ch biorxiv	32313079	GSE130892

1				
2	140	Limits in the detection of m6A ch biorxiv	32313079	GSE130892
3 ⊿	141	Limits in the detection of m6A ch biorxiv	32313079	GSE130892
4 5	142	Limits in the detection of m6A ch biorxiv	32313079	GSE130892
6	143	Limits in the detection of m6A ch biorxiv	32313079	GSE130892
7	144	Limits in the detection of m6A ch biorxiv	32313079	GSE130892
8	145	PCIF1 catalyzes m6Am mRNA mMol Cell	31279659	GSE122803
9 10	146	PCIF1 catalyzes m6Am mRNA mMol Cell	31279659	GSE122803
11	147	PCIF1 catalyzes m6Am mRNA m Mol Cell	31279659	GSE122803
12	148	PCIF1 catalyzes m6Am mRNA mMol Cell	31279659	GSE122803
13	149	PCIF1 catalyzes m6Am mRNA mMol Cell	31279659	GSE122803
14 15	150	PCIF1 catalyzes m6Am mRNA mMol Cell	31279659	GSE122803
15	151	m6A mRNA methylation regulate Nat Metabolism	51279059	GSE122805
17	151	m6A mPNA methylation regulate Nat Metabolism		GSE132306
18	152			GSE132300
19	153	m6A mRNA methylation regulate Nat Metabolism		GSE132306
20 21	154	m6A mRNA methylation regulate Nat Metabolism		GSE132306
22	155	m6A mRNA methylation regulate Nat Metabolism		GSE132306
23	156	m6A mRNA methylation regulate Nat Metabolism		GSE132306
24	157	m6A mRNA methylation regulate Nat Cell Biol	30154548	GSE93911
25	158	m6A mRNA methylation regulate Nat Cell Biol	30154548	GSE93911
20 27	159	N6-methyladenosine modification PLoS Pathog	29659627	GSE104621
28	160	N6-methyladenosine modification PLoS Pathog	29659627	GSE104621
29	161	N6-methyladenosine modification PLoS Pathog	29659627	GSE104621
30	162	N6-methyladenosine modification PLoS Pathog	29659627	GSE104621
31 32	163	Long noncoding RNA GAS5 inhi Mol Cancer	31619268	GSE129716
33	164	Long noncoding RNA GAS5 inhi Mol Cancer	31619268	GSE129716
34	165	Long noncoding RNA GAS5 inhi Mol Cancer	31619268	GSE129716
35	166	Long noncoding RNA GAS5 inhil Mol Cancer	31619268	GSE129716
36 27	167	N 6-Methylation of Adenosine of Cancer Res	30967398	GSE119963
38	168	N 6-Methylation of Adenosine of Cancer Res	30967398	GSE119963
39	160	METTL 2 mediated N6 methylade Mol Cancer	31607270	GSE122122
40	170	METTL2 mediated N6 methylade Mol Cancer	31607270	GSE133132
41	170	VTUDE2 reduction fuels inflorm Mal Concer	21725160	GSE133132
42 43	1/1	Y I HDF2 reduction fuels inflamm Mol Cancer	31/35169	GSE120860
44	172	Y I HDF2 reduction fuels inflamm Mol Cancer	31735169	GSE120860
45	173	YTHDF2 reduction fuels inflamm Mol Cancer	31735169	GSE120860
46	174	YTHDF2 reduction fuels inflamm Mol Cancer	31735169	GSE120860
47 48	175	ALKBH5 suppresses malignancy Mol Cancer	32772918	GSE149510
40	176	ALKBH5 suppresses malignancy Mol Cancer	32772918	GSE149510
50	177	ALKBH5 suppresses malignancy Mol Cancer	32772918	GSE149510
51	178	ALKBH5 suppresses malignancy Mol Cancer	32772918	GSE149510
52 52	179	Leukemogenic Chromatin Alterat Cell Stem Cell	32402251	GSE128575
55 54	180	Leukemogenic Chromatin Alterat Cell Stem Cell	32402251	GSE128575
55	181	Leukemogenic Chromatin Alterat Cell Stem Cell	32402251	GSE128575
56	182	Leukemogenic Chromatin Alterat Cell Stem Cell	32402251	GSE128575
57	183	The m6A methyltransferase MET <i>oncogene</i>	30659266	PRJNA498900
58 59	184	The m6A methyltransferase MET oncogene	30659266	PRJNA498900
60	185	The m6A methyltransferase MET oncogene	30659266	PRJNA498900
	186	The Role of $m \in A/m$ -RNA Methy Neuron	30048615	GSE113708
	100	The Role of HI o A/III-RIVA MEMININGUIOII	500+0015	05115/70

1				
2	187	The Role of m 6 A/m-RNA Methy Neuron	30048615	GSE113798
3	188	The Role of m 6 A/m-RNA Methy Neuron	30048615	GSE113798
4 5	189	The Role of m 6 A/m-RNA Methy Neuron	30048615	GSE113798
6	190	The Role of m 6 A/m-RNA Methy Neuron	30048615	GSE113798
7	191	The Role of m 6 A/m-RNA Methy Neuron	30048615	GSE113798
8	192	m6A mRNA methylation regulate Nat Metabolism		GSE120024
9 10	193	m6A mRNA methylation regulate Nat Metabolism		GSE120024
11	194	m6A mRNA methylation regulate Nat Metabolism		GSE120024
12	195	m6A mRNA methylation regulate Nat Metabolism		GSE120024
13	196	m6A mRNA methylation regulate Nat Metabolism		GSE120024
14 15	197	m6A mRNA methylation regulate Nat Metabolism		GSE120024
16	198	m6A mRNA methylation regulate Nat Metabolism		GSE120024
17	190	m64 mRNA methylation regulate Nat Metabolism		GSE120024
18	200	moa many a methylation regulate Nat Metabolism		CSE120024
19 20	200	moA mRNA methylation regulate Nat Metabolism		GSE120024
20 21	201	m6A mRNA methylation regulate Nat Metabolism		GSE120024
22	202	m6A mRNA methylation regulate Nat Metabolism		GSE120024
23	203	m6A mRNA methylation regulate Nat Metabolism		GSE120024
24	204	m6A mRNA methylation regulate Nat Metabolism		GSE120024
25 26	205	m6A mRNA methylation regulate Nat Metabolism		GSE120024
20	206	m 6 A mRNA methylation regulat Nat Cell Biol	30154548	GSE93911
28	207	m 6 A mRNA methylation regulat Nat Cell Biol	30154548	GSE93911
29	208	m 6 A mRNA methylation regulat Nat Cell Biol	30154548	GSE93911
30	209	m 6 A mRNA methylation regulat Nat Cell Biol	30154548	GSE93911
31 32	210	m 6 A mRNA methylation regulat Nat Cell Biol	30154548	GSE93911
33	211	m 6 A mRNA methylation regulat Nat Cell Biol	30154548	GSE93911
34	212	m 6 A mRNA methylation regulat Nat Cell Biol	30154548	GSE93911
35	213	m 6 A mRNA methylation regulat Nat Cell Biol	30154548	GSE93911
36 27	214	RADAR: differential analysis of <i>NGenome Biol</i>	31870409	GSE119168
38	215	RADAR: differential analysis of <i>NGenome Biol</i>	31870409	GSE119168
39	215	RADAR: differential analysis of 1 Genome Biol	21870400	GSE110169
40	210	RADAR. differential analysis of V Genome Biol	21870409	CSE110169
41	217	RADAR. differential analysis of F Genome Biol	31870409	GSE119108
42 43	218	RADAR: differential analysis of F Genome Biol	318/0409	GSEI19168
44	219	RADAR: differential analysis of <i>Genome Biol</i>	31870409	GSE119168
45	220	RADAR: differential analysis of <i>Genome Biol</i>	31870409	GSE119168
46	221	RADAR: differential analysis of <i>MGenome Biol</i>	31870409	GSE119168
47 48	222	RADAR: differential analysis of Menome Biol	31870409	GSE119168
49	223	RADAR: differential analysis of Menome Biol	31870409	GSE119168
50	224	RADAR: differential analysis of Menome Biol	31870409	GSE119168
51	225	RADAR: differential analysis of Menome Biol	31870409	GSE119168
52 52	226	RADAR: differential analysis of Menome Biol	31870409	GSE119168
55 54	227	RADAR: differential analysis of Menome Biol	31870409	GSE119168
55	228	Dynamic landscape and evolution Nucleic Acids Res	32406913	GSE122744
56	229	Dynamic landscape and evolution Nucleic Acids Res	32406913	GSE122744
57	230	Dynamic landscape and evolution <i>Nucleic Acids Res</i>	32406913	GSE122744
58 59	231	Dynamic landscape and evolution <i>Nucleic Acids Res</i>	32406913	GSE122744
60	232	Dynamic landscape and evolution <i>Nucleic Acids Res</i>	32406913	GSE122744
	233	Dynamic landscape and evolution Nucleic Acids Per	32406012	GSE122744
	200	Dynamic ranuscape and evolution Nucleic Actus Res	32400713	USE122/44

2		
3	CRR/SRR	Cell line and batch
4	CRR073021	Lung-4-4-Input
6	CRR073020	Lung-4-4-IP
7	CRR042297	Lung-4-2-Input
8	CRR042296	Lung-4-2-IP
9	CRR073019	Lung-2-4-Input-human
10	CRR073018	Lung-2-4-IP-human
12	CRR055534	Lung-2-1-Input
13	CRR055533	Lung-2-1-IP
14 15	CRR073017	Cerebellum-7-4-Input
15	CRR073016	Cerebellum-7-4-IP
17	CRR055564	Rectum-4-2-Input
18	CRR055563	Rectum 4.2-IP
19 20	CRR055562	$Fsonbagus_4_2_Input$
20	CRR055561	Esophagus 4 2 IP
22	CRR055560	Bostum 5.2 Input
23	CRR055550	Pectum 5.3 IP
24 25	CRR055554	Cerebrum 6.3 Input
25	CRR055553	Corobrum 6.2 ID
27	CRR055550	Mussle 2.2 Input
28	CRR033330	Muscle-3-2-input
29 30	CRR055549	Muscle-3-2-IP
30	CRR055548	Esophagus-3-2-Input
32	CRR055547	Esophagus-3-2-IP
33	CRR055546	Colon-3-2-Input
34 25	CRR055545	Colon-3-2-IP
36	CRR055542	Spleen-3-2-Input
37	CRR055541	Spleen-3-2-IP
38	CRR055540	Urinary_bladder-2-1-Input
39 40	CRR055539	Urinary_bladder-2-1-IP
40	CRR055538	Tongue-2-1-Input
42	CRR055537	Tongue-2-1-IP
43	CRR055535	Spleen-2-1-Input
44 45	CRR055536	Spleen-2-1-IP
45	CRR055530	Spleen-1-1-Input
47	CRR055529	Spleen-1-1-IP
48	CRR055528	Heart-1-1-Input
49 50	CRR055527	Heart-1-1-IP
50	CRR055526	Adipose-1-1-Input
52	CRR055525	Adipose-1-1-IP
53	CRR042321	Urinary bladder-5-3-Input
54 55	CRR042320	Urinary bladder-5-3-IP
56	CRR042319	Urinary bladder-4-2-Input
57	CRR042318	Urinary bladder-4-2-IP
58 50	CRR042317	Trachea-5-3-Input
59 60	CDD042216	Traches 5 2 ID
	CKKU42310	
	CRR042315	I hyroid_gland-5-3-Input

2	CRR042314	Thyroid_gland-5-3-IP
3	CRR042313	Thyroid_gland-4-2-Input
4	CRR042312	Thyroid gland-4-2-IP
5	CRR042311	Testis-4-2-Input
0 7	CRR042310	Testis-4-2-IP
8	CRR042309	Stomach-5-3-Input
9	CRR042308	Stomach 5 3 IP
10	CRR042308	Stomach 4.2 Input
11 12	CRR042307	Stomach-4-2-Input
13	CRR042306	Stomacn-4-2-IP
14	CRR042305	Skin-1-1-Input
15	CRR042304	Skin-1-1-1P
16 17	CRR042303	Skin-4-2-Input
17	CRR042302	Skin-4-2-IP
19	CRR042301	Prostate-4-2-Input
20	CRR042300	Prostate-4-2-IP
21	CRR042299	Muscle-5-3-Input
22	CRR042298	Muscle-5-3-IP
23 24	CRR042295	Liver-4-2-Input
25	CRR042294	Liver-4-2-IP
26	CRR042293	Hypothalamus-5-3-Input
27 29	CRR042292	Hypothalamus-5-3-IP
20	CRR042291	Heart-4-2-Input
30	CRR042290	Heart-4-2-IP
31	CRR042287	Cerebrum-5-3-Input
32	CRR042286	Cerebrum-5-3-IP
33 34	CRR042285	Cerebellum-5-3-Input
35	CRR042284	Cerebellum-5-3-IP
36	CRR042283	Brainstem 5.3 Input
3/ 38	CRR042283	Brainstein 5.3 ID
39	CRR042282	A orte 4.2 Input
40	CRR042281	Aorta 4.2 ID
41	CRR042280	Aorta-4-2-IP
42	CRR042279	Adrenal_gland-1-1-Input
43 44	CRR042278	Adrenal_gland-1-1-IP
45	CRR073004	U251-Input
46	CRR073005	U251-IP
47	CRR072998	HT29-Input
48 49	CRR072999	HT29-IP
50	CRR072990	GOS-3-1-Input
51	CRR072991	GOS-3-1-IP
52	CRR072992	GOS-3-2-Input
53 54	CRR072993	GOS-3-2-IP
55	SRR10259052	Huh7
56	SRR10259053	Huh7
57	SRR10259054	Huh7
58 59	SRR10259055	Huh7
60	SRR10259056	Huh7
	SRR10259050	Huh7
	511110457057	11011/

2	SRR10259058	Huh7
3	SRR10259059	Huh7
4	SRR456551	HepG2
5	SRR456552	HepG2
7	SRR456553	HenG2
8	SRR456555	HenG2
9	SRR456556	HenG2
10 11	SRR456557	HenG2
12	SRR430337	A 540
13	SRR1182633	A540
14	SKR1182034	A540
15 16	SKR3057528	A549
17	SKR3057327	A349
18	SRR3057334	H1299
19	SRR3057333	H1299
20 21	SRR3066066	MONO-MAC-6
22	SRR3066067	MONO-MAC-6
23	SRR3066068	MONO-MAC-6
24	SRR3066069	MONO-MAC-6
25 26	SRR5248992	PBT003
27	SRR5248996	PBT003
28	SRR5239086	MOLM13
29	SRR5239087	MOLM13
30 31	SRR5239088	MOLM13
32	SRR5239089	MOLM13
33	SRR5239098	MOLM13
34	SRR5239099	MOLM13
35 36	SRR5239100	MOLM13
37	SRR5239101	MOLM13
38	SRR4288705	NOMO-1
39 40	SRR4288706	NOMO-1
40	SRR4288709	MA9.3ITD
42	SRR4288710	MA9.3ITD
43	SRR5060388	HepG2
44 45	SRR5861462	HepG2
46	SRR5060389	HepG2
47	SRR5861463	HepG2
48	SRR5907119	HepG2
49 50	SRR5907120	HepG2
51	SRR5907121	HepG2
52	SRR5907122	HepG2
53	SRR6686554	HepG2
54 55	SRR6686555	HepG2
56	SRR6686556	HepG2
57	SRR6686557	HenG2
58	SRR6686558	HepG2
59 60	SRR6686550	HenG?
	SKK0000339	001 L1
	SKK9029308	UCI-Ly1

2	SRR9029569	OCI-Ly1	
3	SRR9029570	OCI-Ly1	
4 5	SRR9029571	OCI-Ly1	
6	SRR9029572	OCI-Ly1	
7	SRR9029573	OCI-Ly1	
8	SRR8234036	Mel624	
9 10	SRR8234037	Mel624	
11	SRR8234038	Mel624	
12	SRR8234039	Mel624	
13	SRR8234040	Mel624	
14	SRR8234041	Mel624	
16	SRR9211553	EndoC-bH1	
17	SRR9211554	EndoC-bH1	
18 19	SRR9211555	EndoC-bH1	
20	SRR9211562	EndoC-bH1	
21	SRR9211563	EndoC-bH1	
22	SRR9211564	EndoC-bH1	
23 24	SRR5194801	HEC-1-A	
25	SRR5194802	HEC-1-A	
26	SRR6132499	iSLK.219	
27 28	SRR6132500	iSLK.219	
29	SRR6132503	iSLK.219	
30	SRR6132504	iSLK.219	
31 32	SRR8889196	HCT116	
33	SRR8889197	НСТ116	
34	SRR8889198	НСТ116	
35 36	SRR8889199	HCT116	
37	SRR7829546	PEO1	
38	SRR7829548	PEO1	
39 40	SRR9336432	BGC823	
41	SRR9336434	BGC823	
42	SRR7965996	SMMC7721	
43 44	SRR7965997	SMMC7721	
45	SRR7965998	SMMC7721	
46	SRR7965999	SMMC7721	
47	SRR11626649	HCCLM3	
48 49	SRR11626650	HCCLM3	
50	SRR11626651	HCCLM3	
51	SRR11626652	HCCLM3	
52 53	SRR8755805	THP1	
54	SRR8755806	THP1	
55	SRR8755811	THP1	
56 57	SRR8755812	THP1	
58	SRR8118687	BCa5637	
59	SRR8118688	BCa5637	
60	SRR8118689	BCa5637	
	SRR7075085	B lymphocyte	

2	SRR7075089	B_lymphocyte
3	SRR7075093	B_lymphocyte
4 5	SRR7075097	B lymphocyte
5	SRR7075101	B lymphocyte
7	SRR7075105	B lymphocyte
8	SRR7851591	Islets
9	SRR7851592	Islets
10 11	SRR7851593	Islats
12	SRR7851595	Islate
13	SRR7851594	Islets
14	SKK/031393	
15 16	SRR/851596	Islets
10	SRR/85159/	Islets
18	SRR/851606	Islets
19	SRR7851607	Islets
20	SRR7851608	Islets
21	SRR7851609	Islets
23	SRR7851610	Islets
24	SRR7851611	Islets
25	SRR7851612	Islets
26 27	SRR5194775	Endometrial
28	SRR5194776	Endometrial
29	SRR5194779	Endometrial
30	SRR5194780	Endometrial
31	SRR5194783	Endometrial
33	SRR5194784	Endometrial
34	SRR5194787	Endometrial
35	SRR5194788	Endometrial
30	SRR7763577	Ovary
38	SRR7763578	Ovary
39	SRR7763579	Ovary
40 41	SRR7763580	Ovary
42	SRR7763581	Ovary
43	SRR7763582	Ovary
44	SRR7763583	Ovary
45 46	SRR7763564	Ovary
47	SRR7763565	Ovary
48	SRR7763566	Ovary
49 50	SRR7763567	Ovary
50 51	SRR7763568	Ovary
52	SRR7763569	Ovary
53	SRR7763570	Ovary
54 55	SRR 8200856	Kidney
56	SRR 8202020	Kidney
57	SIXIX020703/	Kidney Vidney
58	SKK0207838	Kiuncy Vidnov
59 60	SKK8209839	
00	SKK8209860	Kianey
	SRR8209861	Kidney

Table S2. Sources of genetic variants

4				
5	Database	Species	Tumor Type	SNP number
6				
7	TCGA (v35)	Human	TCGA-BRCA	82,280
8	TCGA (v35)	Human	TCGA-THCA	5,129
9	TCGA (v35)	Human	TCGA-UCEC	561,179
10	TCGA (v35)	Human	TCGA-DLBC	6,309
11	TCGA (v35)	Human	TCGA-COAD	186,914
12	TCGA (v35)	Human	TCGA-CESC	66,316
13	TCGA (v35)	Human	TCGA-BLCA	112,098
14	TCGA (v35)	Human	TCGA-CHOL	3,321
15	TCGA (v35)	Human	TCGA-ESCA	27,404
16	TCGA (v35)	Human	TCGA-ACC	7,657
1/ 10	TCGA (v35)	Human	TCGA-KICH	2,171
1ð 10	TCGA (v35)	Human	TCGA-HNSC	83,690
20	TCGA (v35)	Human	TCGA-LIHC	40,094
20	TCGA (v35)	Human	TCGA-MESO	2,510
21	TCGA (v35)	Human	TCGA-LAML	3,559
23	TCGA (v35)	Human	TCGA-KIRP	16,530
24	TCGA (v35)	Human	TCGA-KIRC	18,495
25	TCGA (v35)	Human	TCGA-GBM	47,187
26	TCGA (v35)	Human	TCGA-LGG	30,129
27	TCGA (v35)	Human	TCGA-SARC	16,651
28	TCGA (v35)	Human	TCGA-PCPG	1,801
29	TCGA (v35)	Human	TCGA-READ	51,570
30	TCGA (v35)	Human	TCGA-PAAD	24,214
31	TCGA (v35)	Human	TCGA-LUAD	171,843
32	TCGA (v35)	Human	TCGA-PRAD	23,207
33	TCGA (v35)	Human	TCGA-OV	32,673
34	TCGA (v35)	Human	TCGA-LUSC	150,852
35	TCGA (v35)	Human	TCGA-TGCT	2,465
36	TCGA (v35)	Human	TCGA-THYM	2,041
3/	TCGA (v35)	Human	TCGA-UVM	1,338
38	TCGA (v35)	Human	TCGA-SKCM	323,031
39 40	TCGA (v35)	Human	TCGA-UCS	8,291
40 //1	TCGA (v35)	Human	TCGA-STAD	151,966
42	Total: 33 cancer types			2,264,915

4

- ⁵ Information
- 6 7 Somatic mutations in Breast Invasive Carcinoma
- 8 Somatic mutations in Thyroid carcinoma
- 9 Somatic mutations in Uterine Corpus Endometrial Carcinoma
- 10 Somatic mutations in Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
- 11 Somatic mutations in Colon adenocarcinoma
- ¹² Somatic mutations in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma
- ¹³ Somatic mutations in Bladder Urothelial Carcinoma
- ¹⁴ Somatic mutations in Cholangiocarcinoma
- ¹⁵ Somatic mutations in Esophageal Carcinoma
- Somatic mutations in Adrenocortical carcinoma
- Somatic mutations in Kidney Chromophobe
 Somatic mutations in Kidney Chromophobe
- Somatic mutations in Head and Neck Squamous Cell Carcinoma
- 20 Somatic mutations in Liver hepatocellular carcinoma
- 21 Somatic mutations in Mesothelioma
- 22 Somatic mutations in Acute Myeloid Leukemia
- 23 Somatic mutations in Kidney renal papillary cell carcinoma
- Somatic mutations in Kidney renal clear cell carcinoma
- 25 Somatic mutations in Glioblastoma multiforme
- 26 Somatic mutations in Brain Lower Grade Glioma
- 27 Somatic mutations in Sarcoma
- 28 Somatic mutations in Pheochromocytoma and Paraganglioma
- 29 Somatic mutations in Rectum adenocarcinoma
- 30 Somatic mutations in Pancreatic adenocarcinoma
- 31 Somatic mutations in Lung adenocarcinoma
- 32 Somatic mutations in Prostate adenocarcinoma
- 33 Somatic mutations in Ovarian serous cystadenocarcinoma
- ³⁴ Somatic mutations in Lung squamous cell carcinoma
- ³⁵ Somatic mutations in Testicular Germ Cell Tumors
- 36 Somatic mutations in Thymoma
- 37 Somatic mutations in Uveal Melanoma
- 38 Somatic mutations in Skin Cutaneous Melanoma
- 39 Somatic mutations in Uterine Carcinosarcoma
- 40 41 Somatic mutations in Stemach adenocarcinoma

- 52 53
- 54 55
- 56 57
- 58
- 59 60

JICN.

Table 51. EIIF Value for Each Nucleoline			
Nucleotide	EIIP		
A	0.1260		
U	0.1335		
G	0.0806		
С	0.1340		

Table S1. EIIP Value for Each Nucleotide

Table S2 Domain knowledges considered in m6A-CAPred

ID	Name	Description	Note
1	UTR5	5' UTR	
2	UTR3	3' UTR	
3	cds	Coding sequence	
4	Stop_codons	stop codons flanked by 100bp	
5	Start_codons	start codons flanked by 100bp	Dummy voriables
6	TSS	downstream 100bp of TSS	indicating whether
7	TSS_A	downstream 100bp of TSS on A	the site is overlapped
8	exon_stop	exons containing stop codons	to the topological
9	alternative_exon	alternative exons	PNA transcript
10	constitutive_exon	constitutive exons	
11	internal_exon	Internal exons	
12	long_exon	long exons (exon length >= 400bp)	
13	last_exon	5' last_exon	
16	intron	intron	
17	length_UTR3	3'UTR length	
18	length_UTR5	5'UTR length	The new on levels in
19	length_cds	coding sequence length	bn
20	length_tx_full	full transcript length	
21	length_gene_full	full gene length	
22	clust_f1000	count of neighboring input site at 1001 bp	
23	clust_f100	count of neighboring input site at 101 bp	
24	clust_A_f1000	count of neighboring A within in 2001 nt window	Clustering
25	clust_A_f100	count of neighboring A within 201 nt window	information
26	dist_nearest_p2000	distance to the closest neighboring input site at 2001 bp	
27	dist_nearest_p200	distance to the closest neighboring input site at 201 bp	
28	PC_1bp	phastCons scores of the nucleotide	
29	PC_101bp	average phastCons scores within the flanking 101 bp	Scores related to
30	FC_1bp	fitCons scores of the nucleotide	conservation
31	FC_101bp	average fitCons scores within the flanking 101 bp region	

1
י ר
2
3
4
5
6
7
,
ð
9
10
11
12
13
14
14
15
16
17
18
19
20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
22
22
34
35
36
37
38
30
10
40
41
42
43
44
45
16
40
4/
48
49
50
51
50
52
53
54
55
56
57
5.2 5.2
50

20	atruat hybridiza	predicted DNA hybridized region	
32	struct_hydhulze	predicted RNA hybridized region	RNA secondary
33			
<u> </u>			-
35			-
30			-
31	mik_targeted_genes	MIRINA targeted genes	-
38	HNRNPC_eCLIP	sites	
39	TargetScan	predicted miRNA targeted sites by TargetScan	
40	Verified_miRtargets	miRNA targeted sites verified by experiment	Attributes of the
41	METTL3_TREW	overlapped with binding regions of METTL3	genes or transcripts
42	METTL14_TREW	overlapped with binding regions of METTL14	
43	WTAP_TREW	overlapped with binding regions of WTAP	
44	METTL16_CLIP	overlapped with binding regions of METTL16	
45	ALKBH5_PARCLIP	overlapped with binding regions of ALKBH5	
46	FTO_CLIP	overlapped with binding regions of FTO	
47	isoform_num	number of isoforms	
48	exon_num	number of exons	
49	GC_cont_genes	GC composition of genes	Genomic properties
50	GC_cont_101bp_abs	GC composition of 101 bp	
51	pos_UTR5	relative position on 5'UTR	
52	pos_UTR3	relative position on 3'UTR	Relative position on
53	pos_cds	relative position on coding sequence	the region
54	pos_exons	relative position on exon	
		C2	

Figure S1. Gene Ontology Enrichment analysis. (A) The top 20 biological processes enriched with pro-cancer m6A sites. **(B)** The top biological processed obtained for anti-cancer group.

[UCII	zoevrice wang@mdni.com 代表 Genes Editorial Office.zgenes@mdni.com 、	6 4
GO	收件人: Yongshuang Xiao; Yuqi Liu 抄送: 你; Yuqi Liu; Sheng Cao; Jiaming Huang; Xuan Wang; Bowen Song; Wei Zhong; + 另外 2 人	周三 2
	Dear Dr. Xiao,	
	Thank you for submitting the following manuscript to Genes:	
	Manuscript ID: genes-3297438	
	Type of manuscript: Article Title: m6A-CAPred: domain-characteristics enabled machine learning of	
	cancer-associated N6-methyladenosine (m6A) sites Authors: Zeyu Chen, Yuqi Liu, Sheng Cao, Jiaming Huang, Xuan Wang, Bowen	
	Song, Wei Zhong, Yongshuang Xiao *	
	E-mails: xyfyczy71@outlook.com, yuqi.liu@njucm.edu.cn,	
	caosheng8099@outiook.com, Jiaming.nuang21@student.xjtu.edu.cn, xuan.wang17@student.xjtlu.edu.cn, bowen.song@njucm.edu.cn,	
	snzhongwei@outlook.com, ys.xiao@xzhmu.edu.cn Bioinformatics	
	https://www.mdpi.com/journal/genes/sections/bioinformatics Bioinformatics of RNA Modifications and Epitranscriptome	
	https://www.mdpi.com/journal/genes/special_issues/9431069KM8 https://susy.mdpi.com/user/manuscripts/review_info/4580fb9c680662ccf9279c42cb9b239d	
	We regret to inform you that we will not be processing your submission	
	further. Submissions sent for peer-review are selected based on discipline,	
	publication in scholarly journals. Therefore, our decision does not	
	$501 \times 436 \text{mm} (57 \times 57 \text{DBI})$	
	591X430mm (57 X 57 DF1)	
	591X430mm (57 X 57 DF1)	
	591X430mm (57 X 57 DF1)	
	591X430mm (57 X 57 DF1)	
	591X430mm (57 X 57 DF1)	
	591X430mm (57 X 57 DF1)	
	591X430mm (57 X 57 DF1)	
	591X4300000 (57 X 57 DF1)	
	591X4301111 (57 X 57 DF1)	
	591X4301111 (57 X 57 DF1)	
	591X4301111 (57 X 57 DF1)	
	591X4301111 (57 X 57 DF1)	

We regret to inform you that we will not be processing your submission further. Submissions sent for peer-review are selected based on discipline, novelty and general significance, in addition to the usual criteria for publication in scholarly journals. Therefore, our decision does not necessarily reflect the quality of your work.

We wish you every success if you choose to pursue publication elsewhere.

Kind regards, Genes Editorial Office genes@mdpi.com

Disclaimer: MDPI recognizes the importance of data privacy and protection. We treat personal data in line with the General Data Protection Regulation (GDPR) and with what the community expects of us. The information contained in this message is confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this message in error, please notify me and delete this message from your system. You may not copy this message in its entirety or in part, or disclose its contents to anyone.

540x290mm (57 x 57 DPI)