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Abstract:

N6-methyladenosine (m6A) is the most prevalent post-transcriptional
modification in eukaryotic cells, playing a crucial role in regulating various
biological processes. Dysregulation of m6A status is implicated in multiple
human diseases, including cancer. Several prediction frameworks have
been proposed for high-accuracy identification of putative m6A sites;
however, none have tar-geted direct prediction of cancer-associated (or
pro-cancer) m6A residues at the base-resolution level. Here, we report
m6A-CAPred, a computational tool for predicting pro-cancer m6A sites
learned from a comprehensive dataset of experimentally validated m6A
sites. Our findings indi-cate that sequence information alone achieves
limited performance. However, by leveraging domain-related knowledge
(genome-derived features), m6A-CAPred successfully captures dis-tinct
domain characteristics between potentially pro-cancer m6A modifications
and normal ones, with an average AUROC of 0.885 tested on an
independent dataset. Leveraging the power of machine learning, we then
performed transcriptome-wide prediction for large-scale screening of
potentially pro-cancer m6A sites. Somatic variants derived from 33 types
of TCGA cancer projects were extracted for additional validation, and the
results showed that SNP density clearly differ-entiated the predicted pro-
cancer and normal m6A sites. The m6A-CAPred web server is freely
accessible at: www.rnamd.org/m6A-CAPred.
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N6-methyladenosine (m°A) is the most prevalent post-transcriptional modification in eukaryotic
cells, playing a crucial role in regulating various biological processes. Dysregulation of m°A status
is implicated in multiple human diseases, including cancer. Several prediction frameworks have
been proposed for high-accuracy identification of putative m°A sites; however, none have targeted
direct prediction of cancer-associated (or pro-cancer) m°A residues at the base-resolution level.
Here, we report m6A-CAPred, a computational tool for predicting pro-cancer m°A sites learned
from a comprehensive dataset of experimentally validated m°A sites. Our findings indicate that
sequence information alone achieves limited performance. However, by leveraging domain-related
knowledge (genome-derived features)) m6A-CAPred successfully captures distinct domain
characteristics between potentially pro-cancer m°A modifications and normal ones, with an average
AUROC of 0.885 tested on an independent dataset. Leveraging the power of machine learning, we
then performed transcriptome-wide prediction for large-scale screening of potentially pro-cancer
m°A sites. Somatic variants derived from 33 types of TCGA cancer projects were extracted for
additional validation, and the results showed that SNP density clearly differentiated the predicted
pro-cancer and normal m°A sites. The m6A-CAPred web server is freely accessible at:
www.rnamd.org/m6A-CAPred.

Keywords: N6-methyladenosine; Machine-learning; Epitranscriptomic

1. Introduction

Exploration of RNA epigenetics has led to the discovery of more than 170 types of
RNA modification (1). Among them, N6-methyladenosine (m°A), the most prevalent
marker in messenger RNA and long noncoding RNA (2), has been identified as an
abundant and dynamically regulated modification (3). m°A was first discovered in poly-
A RNA in 1974 (4), and since then, it has been identified in various eukaryotic organisms.
Over the past decades, multiple studies have underscored the biological significance of
m°A modification in various aspects, including but not limited to, regulation of mRNA
translation (5), RNA-protein interaction (6), microRNA (miRNA) processing (7), DNA
damage response, and regulation of RNA stability (8). In the context of cancer, m°A
modification has been demonstrated to be a key factor due to its implications in cancer
metastasis (9), abnormal mRNA expression levels (10), and immune evasion (11).
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Dysregulation of m°A has been reported to play an essential role in tumor proliferation
and invasion (12,13), including liver cancer (14,15), lung cancer (16) and breast cancer
(17,18). It is apparent that accurately identifying the locations of cancer-associated (or pro-
cancer) m°A modifications is crucial for the study and understanding of the downstream
9 effects of RNA modification in biology.

oNOYTULT D WN =

10 The first whole transcriptome m°A profiling approach, m°A-seq (MeRIP-seq), was
1 developed in 2012 (19,20) to locate m°A sites. It utilizes antibody-based enrichment of the
g m°A signal to detect and identify regions containing m°A modification, with a resolution
14 of approximately 150 nucleotides. Recent advancements have also been made in
15 integrating ultraviolet cross-linking, enzymatic activity, and domain fusion to achieve
16 high resolution or even base-resolution m°A detection. These techniques include
17 miCLIP/m°A-CLIP-seq (21,22), m°A-REF-seq (23), and DART-seq (24). Nevertheless, these
18 alternative approaches require more complex experimental procedures compared to m°A-
19 seq and have thus far been utilized in fewer biological contexts.
20 To date, a number of epitranscriptome databases (1,25-30) and computational
21 approaches (31-38) have been developed for large-scale collection and accurate
22 identification of RNA modifications. For m°A methylation, pioneer studies such as
23 SRAMP (17) and iRNA toolkits (39-41) were developed based on combination of
24 sequence-derived information. WHISTLE (42) was a high-accuracy predictor that firstly
25 integrating domain knowledges (genomic features) into m°®A prediction framework. And
26 most recently, the deep learning-based approaches were also proved to be another
27 powerful way for m°A prediction (43-45). These works together have greatly facilitated
;2 the in silico identification of modified residues. However, these computational models
30 only report whether a nucleotide is modified or not, without differentiating the potentially
31 functional such as pro-cancer m°A sites.
32 Here, we present m6A-CAPred, a computational framework for accurately classifying
33 potentially pro-cancer and normal m°A modification sites at the base-resolution level. By
34 learning the domain characteristics of m°A modification revealed from a large array of
35 cancer and normal tissues contexts, m6A-CAPred achieved an average AUROC of 0.894
36 tested on independent datasets. Based on the proposed model, we then conducted a large-
37 scale prediction on ~430,000 experimentally validated m°A sites to identify potentially
38 cancer-associated m°A residues. Independent validation test showed that SNP density can
39 be clearly differentiated between the predicted pro-cancer and normal m°A sites. To share
40 our findings, we developed a user-friendly web interface for the proposed framework,
H which comprises the following major components: (i) a database of 111,937 high-
42 confidence m°A sites annotated with cancer context labels, which can be extracted for
Zi further analysis or model development, and (ii) a web server for high-accuracy prediction
of potentially pro-cancer m°A sites from user-provided data. The m6A-CAPred is freely
45 :
46 accessible at: www.rnamd.org/m6A-CAPred.
47
48
49 2. Materials and Methods
50
51 2.1 Benchmark dataset
52 mo6A-CAPred was proposed to predict the pro-cancer m°A methylation sites at base-
53 resolution level. The positive dataset (P) and negative dataset (N) were all high-confidence
>4 experimentally validated m°A sites collected from m°A-Atlas database (with record time
55 > 2, a total of 111,937 sites) (46). The dataset P (pro-cancer m°A sites) and N (normal m°A
26 sites) were further classified by checking whether they localized in m°A-enriched regions
>7 from 25 cancer cell lines and 23 normal tissue samples collected from m6A-TSHub (47)
gg (Supplementary Sheet S1). It may be worth noting that, the m°A sites that did not occur
60 in either cancer or normal conditions were identified as background noise and were

consequently excluded from further experiments.
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Specifically, the difference ratio (DR) was calculated to represent the observed
difference of a m°A site between cancer and normal conditions:

DR = PCancer _2 PNormal (1)

Where P, represents the percentage of occurrence of an mfA site in the cancer cell
lines, while Pyoma represents that of normal-condition samples. The DR ranges from -0.5
to 0.5, with 0.5 indicating the most cancer-associated m°A sites and -0.5 indicating m°A
sites totally observed in normal samples. A DR of zero represents no difference between
cancer and normal contexts. Figure 1 shows the overall distribution of DRs of all high-
confidence m°A sites, with a majority of m°A sites showing no significant differences
between cancer and normal conditions.

Density

-0.50 -0.25 0.00 0.25 0.50
Difference Ratio

Figure 1. The difference ratio (DR) was calculated to represent the observed difference of a m°A site
between cancer and normal conditions. Only a small number of m°A sites show differences under
these two contexts and can be further classified into positive and negative training datasets.

Based on the DR value, the positive (P) and negative (N) datasets for model training
and testing were selected by identifying the m°A residues most associated with cancer
and normal conditions using the Two-tailed test. The pro-cancer mfA sites (P) were
defined as the top 2.5% of right-sided (cancer-associated) m°A sites with a DR > 0.165.
Conversely, the normal m6A sites (N) were identified as the top 2.5% of left-sided (normal)
m°A sites with a DR < -0.38. Specifically, a limited number of base-resolution m°A sites
were selected as positive (cancer-associated, 2,660 sites) and negative (normal, 2,959 sites)
datasets. The negative sites were randomly chosen to maintain a 1:1 P-to-N ratio. For
performance evaluation, 80% of the dataset was randomly selected as training data, while
the remaining 20% was used for independent testing.

To test the SNP density around the predicted pro-cancer m°A sites, we collected a
total of 2,264,915 cancer somatic variants from 33 different human cancer types in the
Cancer Genome Atlas (TCGA) database (version v35) (48). The detailed information of the
SNP datasets can be found in Supplementary Sheet S2.

2.2 Sequence-derived feature

In our study, five different sequence encoding methods were employed to compose
three combinations, including Nucleotide Chemical Property (NCP), position-specific
nucleotide propensity (PSNP), Nucleotide Density (ND), Electron-ion interaction
potential (EIIP) and pseudo-EIIP (PseEIIP).

https://mc.manuscriptcentral.com/evb
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The first encoding method NCP categorizes nucleotides into three groups based on
their distinct structural chemical properties (49). Primarily, the number of rings in the
nucleotides is considered: adenosine and guanosine contain two rings, while cytidine and
uridine consist of only one ring. Secondly, adenosine and cytidine are characterized by
the presence of an amino group, whereas guanosine and uridine feature a keto group.
Lastly, cytidine and guanosine demonstrate stronger hydrogen bonding than adenosine
and uridine. Utilizing these properties, the i-th nucleotide in sequence S can be encoded
as a vector Si = (xi, yi, zi):

1if sl.e{A,G} 1if sie{A,C} 1if sl.e{A,U}
" oif sefc,ul M T 0ifse(G, UL T T 0ifsefC, G @)

PSNP refers to the variation in the frequency of nucleotides at specific positions in
RNA sequences between positive and negative datasets. By calculating the frequency of
the appearances of A, C, G, and T at the i-position respectively, two matrices with 4x41
dimensions, namely Z,,; and Z,,,.,, were obtained. Z,,; was derived from the sequence
of all positive data, while Z,,s was derived from the sequence of all negative data. In this
context, the Position-Specific Nucleotide Propensity (PSNP) matrices were denoted as
Zpsnp:

Z VA

PSNP — plus - Zminus (3)

ND represents the distribution and cumulative frequency of nucleotides at each
position. The density of the i" nucleotide is calculated as the number of nucleotides of the
same type appearing before the (i + 1) position, divided by i. For the sequence
'AGAUUCA!, the density of 'A'is 1 (1/1), 0.67 (2/3), and 0.43 (3/7) at the 1st, 3rd, and 7th
positions, respectively.

The EIIP values of nucleotides was originally proposed by Nair et al in 2006 (50).
Specifically, each nucleotide is encoded as a numeric value that represents its electron-ion
interaction potential (Supplementary Table S1). Additionally, the pseudo-EIIP (PseEIIP)
was calculated by multiplying the sum of the numeric value of tri-nucleotides by their
frequency in a given sequence.

In the following section, we will explore which combination of encoding strategies
yields the best performance for model development.

2.3 Genome-derived feature

Genome-derived feature guided by domain characteristics have been encoded as an
effective feature type that contributing to the performance of prediction models in
classifying modified or unmodified RNA residues (51). In our work, we try to capture the
distinct patterns between pro-cancer and normal m°A modification sites. Specifically, 54
domain (genomic) features were extracted for both pro-cancer and normal base-resolution
m°A sites. These genomic properties including dummy variables (1: overlapped; 0: no
overlapped) indicating overlapped regions (such as CDS, 5'UTR), counting of adjacent
input site and neighboring A, region length, conservation score (PhastCons (52) and
fitCons (53)), RNA secondary structures predicted by RNAfold package (54), and distance
to regions’ 5'/3" ends. The ‘TxDb.Hsapiens.UCSC.hg38.knownGene’ annotation file was
used to extract the corresponding human genomic regions. Please refer to Supplementary
Table S2 for more details about the genomic features considered in the m6A-CAPred
model.

2.4 Machine-learning approach used for model construction
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Support Vector Machine (SVM) has been widely used in previous prediction model
with satisfactory performance (55-57). We used the R language interface of LIBSVM (58)
to build the final m6A-CAPred model, the radial basis function was set as kernel, with
other parameters using the default setting.

2.5 Performance evaluation

For performance evaluation, we applied the following evaluation metrics. In general,
Receiver Operating Characteristic (ROC) curve (sensitivity against 1-specificity) and the
area under the ROC curve (AUROC) were used as the primary performance evaluation
metrics. In addition, we also calculated sensitivity (Sn), specificity (Sp), Matthew's
Correlation Coefficient (MCC), and overall accuracy (ACC) as additional indicators for
evaluating the reliability of the model. A 5-fold cross-validation was applied on training
datasets, while the testing datasets was used for independent testing. Only the m°A sites
that do not include as training step were selected for independent testing purpose.

P

Sn=
" TP+EN @)
TN
Sp= 5
P IN+FP ®)
& TPxTN — FPx FN ©)
J(IP+FP)x(TP+FN)x (TN + FP)x (TN + FN)
TP +TN @)

ACC=————"—
TP+TN+FP+FN

Among them, TP represents true positive, while TN represents true negative; FP
stands for the number of false positive, and FN stands for the number of false negative.

2.6 Website construction

m6A-CAPred web interfaces were constructed by using HyperText Markup
Language (HTML), Hypertext Preprocessor (PHP), and Cascading Style Sheets (CSS). All
metadata was stored using MySQL tables. To present statistical diagrams, EChars was
exploited.

3. Results

3.1. Different sequence encoding approaches used for prediction of pro-cancer m°A sites

To try to capture the distinct patterns of pro-cancer m°A sites, we applied different
sequence-based feature extracting approaches for model development and tested their
performances. Firstly, we tried to explore whether there are significant differences in the
primary RNA sequences between pro-cancer and normal m°A sites. The 4Int RNA
sequence centered on each m°A site was extracted and encoded using combined sequence-
based approaches. We considered a total of three combination: NCP + PSNP, NCP + ND
+ EIIP, and EIIP + PseEIIP. The Support Vector Machine (SVM) was applied to represent
traditional machine learning framework. The results (Table 1) showed that sequence-
based information only achieved very limited performances, with the best performance
achieved by combination of EIIP and PseEIIP (AUROC of 0.577), suggesting that sequence
information alone cannot effectively classify the pro-cancer m°A residues from the normal
ones.
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Table 1. Performance evaluation using different sequence-based encoding approaches

Encoding Independent test
approach Sn Sp ACC MCC  AUROC
NCP + PSNP 58.3% 49.1% 53.7% 0.074 0.550
NCP + ND + EIIP 52.8% 56.0% 54.4% 0.088 0.566
EIIP + PseEIIP 54.1% 55.5% 54.8% 0.0% 0.577

Note: we randomly selected 80% of dataset as training dataset and the performance of predictors
were evaluated by the rest of 20% of dataset as independent testing data, only data not included in
training step was selected for independent testing purpose.

3.2 Classifying pro-cancer m°A sites using genome-derived information

We next tried to train the classifier by adding genome-derived information, with the
integrated model combining sequence-based and 54 additional genomic knowledges
(Supplementary Table S2). We found that genomic features greatly enhanced the
sequence-based model, improving by 30.8% to 31.9% (Table 2). Specifically, the integrated
model (genomic + EIIP + PseEIIP) achieved the best prediction performance with an
AUROC of 0.885, followed by genomic + NCP + ND + EIIP (AUROC of 0.876) and genomic
+ NCP + PSNP (AUROC of 0.869), tested on independent datasets. Our results suggested
that domain knowledges may be the key factor to capture the distinct patterns between
pro-cancer and normal m°A sites, indicating the reliability of the proposed mo6A-
CAPredmodel.

Table 2. Performance evaluation using integrated encoding methods

5-fold cross validation Independent test
Method MC AURO MC AURO
Sn Sp ACC C C Sn Sp ACC C C

Integrate

d model 7?'4 7§ = 7?'4 0.569 0.872 7?'1 72 7 7(?'4 0.588 0.869
1* % %o Yo % %o Yo

Integrate

d model 78.8 78:3 78.6 0.571 0.869 78.9 80.1 79:5 0.590 0.876
o % % % % % %

Integrate

d model 89'2 89'7 89'4 0.608 0.884 89'8 72'3 89'1 0.602 0.885
I Yo %o %o Yo %o %o

Note: Integrated model 1*: NCP + PSNP + genomic feature; Integrated model 2*: NCP + ND +
EIIP + genomic feature; Integrated model 3*: EIIP + PseEIIP + genomic feature

3.3 SNP density analysis clearly differentiated the predicted pro-cancer and normal m°A sites
Leveraging the proposed machine learning-powered classifier, we then performed a
large-scale prediction on a total of 427,586 experimentally validated m°A sites at base-
resolution level (46). We applied different cut-off values (0.3 to 0.9) for classifying the
potentially pro-cancer m°A residues and calculated the SNP density around pro-cancer
and normal m°A sites, respectively (Table 3). Specifically, the cancer-related somatic
variants were extracted from 33 types of TCGA cancer projects, and the SNP density was
calculated within a +2 bp flanking window of each base-resolution m°A site, with a higher
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density value indicating a stronger association with cancer through the disruption of these
m°A methylation sites. We found that the SNP density of cancer somatic variants around
the predicted pro-cancer m°A sites was significantly higher than that of the normal m°A
group across all cutoff values ranging from 0.3 to 0.9 (Table 3). These results suggest that
the m°A sites classified into the pro-cancer group using m6A-CAPred are generally more
associated with cancer, thereby demonstrating the effectiveness of our newly proposed
mo6A-CAPred framework.

Table 3. The SNP density test of TCGA somatic variants around different m°A groups

SNPs around SNPs around

# of # of ro-cancer méA normal m°A
Mutation ~ Cut-  predicted predicted e Czitcee; ’ si?es P
£f - 1 !
type o pro Car.lcer norma (within + 2 bp (within = 2 bp Value
mOA sites mPA sites
motif) motif)
17,366 25,890
. 1 2 7 y 7 *
0.3 69,680 57,906 (10.23%) (10.04%)
15,174 28,080
4 )31 28437 , 4 *
0 3,216 84,370 (11.60%) (9.87%)
133,35 199,09
05 121,623 305,963 ’ . -
(10.96%) (9.78%)
TCGA
116,44 31,603
i ) 103,077 324,509 y ; o
somatic 0.6 03,0 50 (11.30%) (9.74%)
variant
9,668 33,588
5 4787 19 7 , 'y *%%
0 84,78 342,799 (11.40%) (9.80%)
7,257 35,992
. . , 7 sk
0.8 64,245 363,341 (11.30%) (9.91%)
4,114 39,148
0.9 36,637 390,949 ' f -
(11.23%) (10.01%)

Note: * stands for P-value < 0.05; ** stands for P-value < 0.01; and *** stands for P-value < 0.001.

3.4 Web interface

We developed an online platform to share our findings and facilitate access to the
newly proposed model (Figure 2). The online resource comprises two major components:
i) a database containing 111,937 experimentally validated m°A sites, annotated with
cancer and normal context labels. Users can filter the database by difference ratio, and the
returned results present detailed information for each base-resolution m°A site, including
chromosome position, experimental sources, profiling technique, gene symbol, gene type,
Ensembl ID, and cancer/normal context labels. ii) Users can upload their query m°A sites
with genome coordinates to the online web server; the returned results indicate whether
the predicted m°A sites can be classified into pro-cancer or normal groups. All results can
be downloaded freely.

https://mc.manuscriptcentral.com/evb
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Figure 2. m6A-CAPred online resources. The online resource consists of two components: i) a
database featuring 111,937 experimentally validated m°A sites, annotated with difference ratio and
context labels. ii) Users can also upload their query m°A sites with genome coordinates to the online
web server, which returns results indicating whether the predicted m°A sites are classified as pro-

cancer or normal.

4. Discussion

To date, the regulatory roles and disease/cancer associations of N6-methyladenosine
(m°A) have been largely elucidated. Despite the development of numerous bioinformatic
tools aimed at facilitating m®A prediction, none have specifically targeted the accurate
prediction of cancer-associated m°A sites. To address this gap, we developed a predictive
framework to distinguish potentially pro-cancer m°A sites from normal ones. Our
findings demonstrate that genome-derived information significantly enhances the
performance of traditional sequence-based models. The m6A-CAPred web server is freely
accessible, providing a valuable resource for researchers interested in m°A modifications
related to various cancer types. By accurately identifying pro-cancer m°A sites, m6A-
CAPred contributes to a more comprehensive understanding of m°A modification's role
in cancer development, which may aid in identifying potential therapeutic targets. Further
investigation is essential to fully elucidate the mechanisms underlying m°A modification
dysregulation in cancer and to explore the clinical implications of our findings.
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Recognition of RNA N6-methylac Nat Cell Biol
Recognition of RNA N6-methylac Nat Cell Biol
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N6-Methyladenosine methyltrans: Nat Chem Biol
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Histone H3 trimethylation at lysin Nature
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31810760
22575960
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2 140 Limits in the detection of m6A ch biorxiv 32313079 GSE130892
3 141 Limits in the detection of m6A ch biorxiv 32313079 GSE130892
g 142 Limits in the detection of m6A ch biorxiv 32313079 GSE130892
6 143 Limits in the detection of m6A ch biorxiv 32313079 GSE130892
7 144 Limits in the detection of m6A ch biorxiv 32313079 GSE130892
g 145 PCIF1 catalyzes m6Am mRNA m Mol Cell 31279659 GSE122803
10 146 PCIF1 catalyzes m6Am mRNA m Mol Cell 31279659 GSE122803
11 147 PCIF1 catalyzes m6Am mRNA m Mol Cell 31279659 GSE122803
12 148 PCIF1 catalyzes m6Am mRNA i Mol Cell 31279659  GSEI122803
12 149 PCIF1 catalyzes m6Am mRNA m Mol Cell 31279659 GSE122803
15 150 PCIF1 catalyzes m6Am mRNA m Mol Cell 31279659 GSE122803
16 151 m6A mRNA methylation regulate Nat Metabolism GSE132306
1; 152 m6A mRNA methylation regulate Nat Metabolism GSE132306
19 153 m6A mRNA methylation regulate Nat Metabolism GSE132306
20 154 m6A mRNA methylation regulate Nat Metabolism GSE132306
;; 155 m6A mRNA methylation regulate Nat Metabolism GSE132306
23 156 m6A mRNA methylation regulate Nat Metabolism GSE132306
24 157 m6A mRNA methylation regulate Nat Cell Biol 30154548 GSE93911
25 158 m6A mRNA methylation regulate Nat Cell Biol 30154548 GSE93911
;? 159 N6-methyladenosine modificatior PLoS Pathog 29659627 GSE104621
28 160 N6-methyladenosine modificatior PLoS Pathog 29659627 GSE104621
29 161 N6-methyladenosine modificatior PLoS Pathog 29659627 GSE104621
g? 162 N6-methyladenosine modificatior PLoS Pathog 29659627  GSE104621
32 163 Long noncoding RNA GASS inhi Mol Cancer 31619268 GSE129716
33 164 Long noncoding RNA GASS5 inhi Mol Cancer 31619268 GSE129716
34 165 Long noncoding RNA GASS5 inhi Mol Cancer 31619268 GSE129716
22 166 Long noncoding RNA GASS inhi Mol Cancer 31619268 GSE129716
37 167 N 6-Methylation of Adenosine of Cancer Res 30967398 GSE119963
38 168 N 6-Methylation of Adenosine of Cancer Res 30967398 GSE119963
23 169 METTL3-mediated N6-methyladc Mol Cancer 31607270 GSE133132
41 170 METTL3-mediated N6-methylad¢ Mol Cancer 31607270 GSE133132
42 171 YTHDEF?2 reduction fuels inflamn: Mol Cancer 31735169 GSE120860
Zi 172 YTHDF2 reduction fuels inflammr Mol Cancer 31735169  GSE120860
45 173 YTHDF?2 reduction fuels inflammnr Mol Cancer 31735169 GSE120860
46 174 YTHDEF2 reduction fuels inflamn: Mol Cancer 31735169 GSE120860
47 175 ALKBHS suppresses malignancy Mol Cancer 32772918 GSE149510
22 176 ALKBHS suppresses malignancy Mol Cancer 32772918 GSE149510
50 177 ALKBHS suppresses malignancy Mol Cancer 32772918 GSE149510
51 178 ALKBHS suppresses malignancy Mol Cancer 32772918 GSE149510
gg 179 Leukemogenic Chromatin Alterat Cell Stem Cell 32402251  GSEI128575
54 180 Leukemogenic Chromatin Alterat Cell Stem Cell 32402251 GSE128575
55 181 Leukemogenic Chromatin Alterat Cell Stem Cell 32402251 GSE128575
36 182 Leukemogenic Chromatin Alterat Cell Stem Cell 32402251  GSEI128575
;73 183 The m6A methyltransferase MET oncogene 30659266 PRINA498900
59 184 The m6A methyltransferase MET oncogene 30659266 PRINA498900
60 185 The m6A methyltransferase MET oncogene 30659266 PRINA498900
186 The Role of m 6 A/m-RNA Meth' Neuron 30048615 GSE113798
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The Role of m 6 A/m-RNA Meth' Neuron
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Cell line and batch
Lung-4-4-Input
Lung-4-4-IP
Lung-4-2-Input
Lung-4-2-IP
Lung-2-4-Input-human
Lung-2-4-1P-human
Lung-2-1-Input
Lung-2-1-IP
Cerebellum-7-4-Input
Cerebellum-7-4-1P
Rectum-4-2-Input
Rectum-4-2-1P
Esophagus-4-2-Input
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Rectum-5-3-Input
Rectum-5-3-1P
Cerebrum-6-3-Input
Cerebrum-6-3-1P
Muscle-3-2-Input
Muscle-3-2-IP
Esophagus-3-2-Input
Esophagus-3-2-1P
Colon-3-2-Input
Colon-3-2-IP
Spleen-3-2-Input
Spleen-3-2-1P

Urinary bladder-2-1-Input
Urinary_bladder-2-1-IP
Tongue-2-1-Input
Tongue-2-1-IP
Spleen-2-1-Input
Spleen-2-1-IP
Spleen-1-1-Input
Spleen-1-1-I1P
Heart-1-1-Input
Heart-1-1-IP
Adipose-1-1-Input
Adipose-1-1-IP
Urinary_bladder-5-3-Input
Urinary bladder-5-3-I1P
Urinary_bladder-4-2-Input
Urinary_bladder-4-2-1P

Trachea-5-3-Input

Trachea-5-3-1P

Thyroid_gland-5-3-Input
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Thyroid gland-5-3-1P
Thyroid_gland-4-2-Input
Thyroid gland-4-2-1P
Testis-4-2-Input
Testis-4-2-1P
Stomach-5-3-Input
Stomach-5-3-1P
Stomach-4-2-Input
Stomach-4-2-1P
Skin-1-1-Input
Skin-1-1-1P
Skin-4-2-Input
Skin-4-2-1P
Prostate-4-2-Input
Prostate-4-2-IP
Muscle-5-3-Input
Muscle-5-3-IP
Liver-4-2-Input
Liver-4-2-1P
Hypothalamus-5-3-Input
Hypothalamus-5-3-IP
Heart-4-2-Input
Heart-4-2-IP
Cerebrum-5-3-Input
Cerebrum-5-3-I1P
Cerebellum-5-3-Input
Cerebellum-5-3-1P
Brainstem-5-3-Input
Brainstem-5-3-IP
Aorta-4-2-Input
Aorta-4-2-1P

Adrenal gland-1-1-Input
Adrenal gland-1-1-1P
U251-Input

U251-IP

HT29-Input

HT29-IP
GOS-3-1-Input
GOS-3-1-IP
GOS-3-2-Input
GOS-3-2-1P

Huh7

Huh7

Huh7

Huh7

Huh7

Huh7
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Table S2. Sources of genetic variants

Database

TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)
TCGA (v35)

Total: 33 cancer types

Species

Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
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Tumor Type

TCGA-BRCA
TCGA-THCA
TCGA-UCEC
TCGA-DLBC
TCGA-COAD
TCGA-CESC
TCGA-BLCA
TCGA-CHOL
TCGA-ESCA
TCGA-ACC
TCGA-KICH
TCGA-HNSC
TCGA-LIHC
TCGA-MESO
TCGA-LAML
TCGA-KIRP
TCGA-KIRC
TCGA-GBM
TCGA-LGG
TCGA-SARC
TCGA-PCPG
TCGA-READ
TCGA-PAAD
TCGA-LUAD
TCGA-PRAD
TCGA-OV
TCGA-LUSC
TCGA-TGCT
TCGA-THYM
TCGA-UVM
TCGA-SKCM
TCGA-UCS
TCGA-STAD

SNP number

82,280
5,129
561,179
6,309
186,914
66,316
112,098
3,321
27,404
7,657
2,171
83,690
40,094
2,510
3,559
16,530
18,495
47,187
30,129
16,651
1,801
51,570
24,214
171,843
23,207
32,673
150,852
2,465
2,041
1,338
323,031
8,291
151,966
2,264,915
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Information

Somatic mutations in Breast Invasive Carcinoma

Somatic mutations in Thyroid carcinoma

Somatic mutations in Uterine Corpus Endometrial Carcinoma
Somatic mutations in Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
Somatic mutations in Colon adenocarcinoma

Somatic mutations in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma
Somatic mutations in Bladder Urothelial Carcinoma

Somatic mutations in Cholangiocarcinoma

Somatic mutations in Esophageal Carcinoma

Somatic mutations in Adrenocortical carcinoma

Somatic mutations in Kidney Chromophobe

Somatic mutations in Head and Neck Squamous Cell Carcinoma
Somatic mutations in Liver hepatocellular carcinoma

Somatic mutations in Mesothelioma

Somatic mutations in Acute Myeloid Leukemia

Somatic mutations in Kidney renal papillary cell carcinoma
Somatic mutations in Kidney renal clear cell carcinoma
Somatic mutations in Glioblastoma multiforme

Somatic mutations in Brain Lower Grade Glioma

Somatic mutations in Sarcoma

Somatic mutations in Pheochromocytoma and Paraganglioma
Somatic mutations in Rectum adenocarcinoma

Somatic mutations in Pancreatic adenocarcinoma

Somatic mutations in Lung adenocarcinoma

Somatic mutations in Prostate adenocarcinoma

Somatic mutations in Ovarian serous cystadenocarcinoma
Somatic mutations in Lung squamous cell carcinoma

Somatic mutations in Testicular Germ Cell Tumors

Somatic mutations in Thymoma

Somatic mutations in Uveal Melanoma

Somatic mutations in Skin Cutaneous Melanoma

Somatic mutations in Uterine Carcinosarcoma

Somatic mutations in Stomach adenocarcinoma
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Table S1. EIIP Value for Each Nucleotide

Nucleotide ElIP

A 0.1260
u 0.1335
G 0.0806
C 0.1340

Table S2 Domain knowledges considered in m6A-CAPred

ID Name Description Note
1 UTR5 5 UTR
2 UTR3 3'UTR
3 cds Coding sequence
4 Stop_codons stop codons flanked by 100bp
5 Start_codons start codons flanked by 100bp 5 bl
6 TSS downstream 100bp of TSS inl;g;:i):mg v\z:lrr:zthee?
7 TSS A downstream 100bp of TSS on A the site is overlapped
8 exon_stop exons containing stop codons to the topological
9 alternative_exon alternative exons Eﬂfrt]ra%r;cwi major
10 constitutive_exon constitutive exons Pt
1 internal_exon Internal exons
12 long_exon long exons (exon length >= 400bp)
13 last_exon 5 last_exon
16 intron intron
17 length_ UTR3 3'UTR length
18 length_UTR5 5'UTR length ) )
19 length_cds coding sequence length 'tl)'ge region length in
20 length_tx_full full transcript length
21 length_gene_full full gene length
22 clust_f1000 ggunt of neighboring input site at 1001
23 clust f100 count of neighboring input site at 101 bp
24 clust_A_f1000 \(/:v(i)rl:g(t)v?/f neighboring A within in 2001 nt
- - o Clustering
25 clust_A_f100 cqunt of neighboring A within 201 nt information
window

. distance to the closest neighboring
26 dist_nearest_p2000 input site at 2001 bp

; distance to the closest neighboring
27 dist_nearest_p200 input site at 201 bp
28 PC_1bp phastCons scores of the nucleotide

average phastCons scores within the
29 PC_101b . Scores related to
—197hp flanking 101 bp Svolutionary

30 FC _1bp fitCons scores of the nucleotide conservation
31 FC_101bp average fitCons scores within the

flanking 101 bp region
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32 struct_hybridize predicted RNA hybridized region RNA secondary
33 struct_loop predicted RNA loop region structures
34 sncRNA sncRNA
35 IncRNA IncRNA
36 HK_genes housekeeping genes
37 miR_targeted_genes | miRNA targeted genes
38 HNRNPC eCLIP eCLIP data of HNRNPC RNA binding
- sites
39 TargetScan predicted miRNA targeted sites by
TargetScan
40 Verified_miRtargets mlRNA targeted sites verified by .
experiment Attributes  of  the
overlapped with binding regions of genes or transcripts
41 METTL3_TREW METTL3
overlapped with binding regions of
42 METTL14_TREW METTL14
overlapped with binding regions of
43 WTAP_TREW WTAP
overlapped with binding regions of
44 METTL16_CLIP METTL16
overlapped with binding regions of
45 ALKBH5_PARCLIP ALKBH5
46 FTO_CLIP overlapped with binding regions of FTO
47 isoform_num number of isoforms
48 exon_num number of exons Genomic broperties
49 GC_cont_genes GC composition of genes prop
50 GC_cont_101bp_abs | GC composition of 101 bp
51 pos_UTRS5 relative position on 5'UTR
52 pos_UTR3 relative position on 3'UTR Relative position on
53 pos_cds relative position on coding sequence the region
54 pos_exons relative position on exon
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Figure S1. Gene Ontology Enrichment analysis. (A) The top 20 biological processes enriched with
pro-cancer m6A sites. (B) The top biological processed obtained for anti-cancer group.
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